How Many Ways Can Mouse Behavioral Experiments Go Wrong? Confounding Variables in Mouse Models of Neurodegenerative Diseases and How to Control Them
Heather M. Schellinck, … Richard E. Brown, in Advances in the Study of Behavior, 2010
B Procedural Errors
Procedural errors occur when the experimenter does not follow the methodological protocol. Often these errors are detected on videos and may be corrected by rescoring the data, but there are cases when the data must be discarded. For example, when the apparatus is not set up correctly, equipment is not turned on or data is “lost” on a computer because two files were given the same name. One glaring example of a procedural error occurred in our olfactory digging test when one experimenter put the sugar reward under a plastic lid instead of above the lid. When the mice dug in the odorized bedding, they could not obtain the sugar reward and thus did not learn the odor–sugar association, and during the choice test showed no preference for the S+ over the S− odor. There was no solution but to delete the data set and repeat the study.
Read full chapter
URL:
https://www.sciencedirect.com/science/article/pii/S0065345410410074
Maintenance Human Factors
Barbara G. Kanki, in Human Factors in Aviation (Second Edition), 2010
A Focus on Procedural Error
One area that seemed to defy solution, was procedural error as evidenced in the Air Midwest Flight 5481 accident that occurred on January 8, 2003. The Beechcraft 1900D with 19 passengers and 2 crew, lost pitch control during takeoff and crashed killing all on board. Probable cause was determined to be the incorrect rigging of the elevator control system compounded by the airplane’s center of gravity, which was substantially aft of the certified aft limit.
Contributing to the cause of the accident were (1) Air Midwest’s lack of oversight of the work being performed at the … maintenance station; (2) Air Midwest’s maintenance procedures and documentation; (3) Air Midwest’s weight and balance program at the time of the accident; (4) the Raytheon Aerospace’s quality assurance inspector’s failure to detect the incorrect rigging of the elevator control system; (5) the Federal Aviation Administration’s (FAA) average weight assumptions in its weight and balance program guidance at the time of the accident; and (6) the FAA’s lack of oversight of Air Midwest’s maintenance program and its weight and balance program. (NTSB, 2004, Executive Summary)
While probable cause was traced to individual actions, the contributing factors assigned responsibility to numerous organizations: the operator, maintenance contractors, manufacturer and regulator. Specific procedure-related recommendations were based on an examination of current task documents. In Figure 21.4, the document on the left is from the operator’s detailed inspection work card; the document on the right is from the manufacturer’s Aircraft Maintenance Manual. In each case, it was felt that document inadequacies contributed to the failure of the mechanic, quality assurance inspector, and foreman on site, to detect the maintenance errors (i.e., incorrect rigging of the elevator control system).
Figure 21-4. Deficient documents that contributed to the Air Midwest Flight 5481 accident.
The deficiencies led to the following requirements for manufacturers and operators of Part 121 aircraft:
- •
-
Manufacturers required to identify appropriate procedures for a complete functional check of each critical flight system; determine which maintenance procedures should be followed by such functional checks; and modify their existing maintenance manuals, so that they contain procedures at the end of maintenance for a complete functional check of each critical flight system.
- •
-
Part 121 air carriers also required to modify their existing maintenance manuals, so that they contain procedures at the end of maintenance for a complete functional check of each critical flight system.
- •
-
Part 121 air carriers required to implement a program in which air carriers and aircraft manufacturers review all work card and maintenance manual instructions for critical flight systems and ensure the accuracy and usability of these instructions so that they are appropriate to the level of training of the mechanics performing the work.
In addition to these requirements, the NTSB report noted that many of the air carrier deficiencies should have been identified through their Continuing Analysis and Surveillance System (CASS) program. This was also the case in the Alaska Airlines Flight 261 accident earlier, and the FAA was working on a revision of the original CASS Advisory Circular to include human factors. In April, 2003, the enhanced Advisory Circular, AC 120–79: Developing and Implementing Continuing Analysis Surveillance System (Federal Aviation Administration, 2003) was published.
Maintenance Error Revisited
As accidents and incidents continued to point to maintenance errors that jeopardized safety, Phase 1 research in the NASA MHF task tried to establish error descriptions based on incident data, asking for instance, what are the error types, the contributing factors, the contexts in which they occur, and their consequences? Systematic studies took advantage of recently developed error analysis tools, such as MEDA and HFACS-ME as well as the ASRS maintenance database that had been steadily growing.
FAA research had already shown that some procedural errors were due to poorly written procedures and the Document Decision Aid was developed to help document writers follow human factors guidance (Drury, Sarac, & Driscoll, 1997). Analyses of manufacturer documents provided another angle on procedural error. Hall reported that outdated information, as well as access, readability, portability and training issues contributed to procedural errors (Hall, 2002). Others found through field interviews and surveys, that manufacturer procedures were usually seen as accurate, but sadly lacking in usability (Chapparo & Groff, 2002). Surveys of maintenance personnel on their use of procedures established that procedural errors were often cases of procedural non-compliance. Hobbs and Williamson (2000) reported that 80% of the maintainers surveyed, reported that they had deviated from procedures at least once in the past year and nearly 10% reported doing so often or very often. McDonald, Corrigan, Daly, and Cromie (2000) reported that 34% of routine maintenance tasks were performed contrary to procedures.
The yet untapped NASA ASRS maintenance database quickly became a valuable source of additional insights on procedural error. In addition to being a testbed for developing error analysis tools (Hobbs & Kanki, 2003), substantive studies were also conducted. In the area of procedural error, studies confirmed that the causes of procedural error came from a variety sources; sometimes the procedure content (correctness, completeness, ambiguity, or conflicting information), and sometimes due to the usability or the norms and safety culture governing its use (Patankar, Lattanzio, Munro & Kanki, 2003; Kanki, 2005). Other problem areas were researched in the ASRS database such as the use of the Minimum Equipment List (Munro & Kanki, 2003), and the performance of shift turnovers (Parke, Patankar & Kanki, 2003).
Read full chapter
URL:
https://www.sciencedirect.com/science/article/pii/B9780123745187000213
Improving Outcomes for Adolescents with Learning Disabilities
Patricia Sampson Graner, Donald D. Deshler, in Learning About Learning Disabilities (Fourth Edition), 2012
Mathematics
Some research has suggested that as many as 5–8% of school-aged students experience some sort of mathematics LD (Geary, 2004). Students with LD tend to commit procedural errors, have difficulty organizing information, and evidence working and long-term memory deficits when performing mathematical tasks. Additionally, they frequently have difficulty with basic computation and problem-solving curricular demands (Geary, 2004; Miller & Mercer, 1997). A study by Montague and Applegate (2000) found that students with LD perceived math problems to be more difficult. They also found that these students required more time to complete problems and evidenced fewer strategies than their peers without disabilities.
Maccini and her colleagues (Maccini, Mulcahy, & Wilson, 2007; Maccini, Strickland, Gagnon, & Malmirgren, 2008) have conducted literature reviews to determine the nature and focus of math interventions that are effective for assisting adolescents with LD. Their reviews of the empirical literature found that the practices resulting in the largest effect sizes included: (1) mnemonic strategy instruction (i.e., use of mnemonics to help students remember each step in a problem-solving strategy); (2) graduated instructional approach (i.e., employing a three-phase instructional process involving concrete instruction to introduce students to concepts via manipulatives, semi-concrete or representational instruction using pictures to represent objects, and abstract instruction using numbers and symbols); (3) cognitive strategy instruction involving planning (i.e., using self-monitoring while solving the math problem, focusing while solving the problem, addressing and using various data to solve problems, and solving the math problem in a specific order); and (4) schema-based instruction (i.e., explicit instruction that focuses on helping learners understand the structure of math word problems such as proportion or comparison). Across these various approaches they found a common thread of effective instruction (Rosenshine & Stevens, 1986) including components of direct and explicit instruction such as: modeling, guided practice, independent practice, monitoring student performance, and corrective feedback.
In sum, adolescents with LD face substantial academic challenges that can prevent them from being successful in being college or career ready.
Read full chapter
URL:
https://www.sciencedirect.com/science/article/pii/B9780123884091000114
Genetic Syndromes as Model Pathways to Mathematical Learning Difficulties
Michèle M.M. Mazzocco, … Michael McCloskey, in Development of Mathematical Cognition, 2016
Characterizing MLD in Girls with Fragile X Syndrome
Early studies documented the existence of mathematics difficulties in fragile X, and later studies searched for causal pathways or, initially, cognitive correlates. Such attempts by the first author and her colleagues centered on fragile X as a model of a procedural MLD subtype, in view of reports of poor executive function skills in both children (Kirk et al., 2005) and adults (Mazzocco, Hagerman, Cronister-Silverman, & Pennington, 1992) with the syndrome. The study failed to provide support for this hypothesis by not finding higher rates of procedural errors in school-age girls with fragile X relative to age-matched peers or girls with Turner syndrome (Mazzocco, 1998). (In fact, the Turner syndrome group showed more such errors than girls with fragile X, to be discussed subsequently.) Still, although procedural errors are considered a hallmark of the proposed procedural MLD subtype, the retrospective analysis of written calculation problems may have been insufficient to detect them. That is, procedural errors are not limited to overt written calculation errors, and may have been more apparent if strategy use had been evaluated in the original study. Moreover, procedural errors are only one potential indicator of an association between executive functions and mathematics. Finally, procedural errors are often due to developmental delays (Geary, 1993) and thus might only be detectable during the early stages of learning the procedure.
Later studies succeeded in identifying more specific associations between aspects of mathematics and components or indicators of executive function. In a landmark functional imaging study, Rivera, Menon, White, Glaser, and Reiss (2002) presented girls and women with two- and three-operand arithmetic statements, and asked these participants to report if the statements were true or false. Of interest was how the corresponding increases in working memory demands between the two-operand (2 + 3 = 4) and three-operand (2 + 3 + 1 = 5) statements affected brain activation in typically developing individuals (who showed increased activation in the prefrontal and parietal cortices during the three- vs. two-operand problems), but not females with fragile X (who, as a group, showed less activation on both sets of problems compared to the females without fragile X). Notably, the degree to which females with fragile X did show this increase in activation was correlated with FMRP expression, suggesting an important biological pathway to the working memory and mathematics impairment.
Overt behavioral group differences were also observed in Rivera and colleagues’ study. Females with fragile X syndrome were less accurate than their peers at evaluating whether the three-operand problem were correct or incorrect, but were as accurate as their peers when evaluating two-operand problems. In view of these two markers of arithmetic difficulty, Rivera and colleagues concluded that females with fragile X appear to lack the cognitive resources linked to working memory ability that are needed (and typically relied upon) to compensate for an increase in working memory demands. Likewise, in the previously described Kirk et al. (2005) study with younger (8-year-old) participants, girls with fragile X and an IQ-matched comparison group both showed increased difficulty on an executive function task (the Contingency Naming Task, Anderson, Anderson, Northam, & Taylor, 2000) when working memory demands were increased. Still, when working memory demands were only moderate, girls with fragile X made more errors than did girls in the comparison group, despite taking the same amount of time to complete the task (Kirk et al., 2005). These findings suggest that working memory limitations in females with fragile X cannot be attributed solely to low IQ (Kirk et al., 2005), and that lower thresholds for experiencing working memory overload may contribute to the mathematics difficulties in this group (Murphy & Mazzocco, 2009).
When working memory demands interfere with otherwise effortless tasks, it may be necessary to rely on supporting or compensatory mechanisms. But generating a strategy and successfully using it to solve a taxing arithmetic task both require at least a rudimentary understanding of numbers and arithmetic operations involved. Is there evidence that girls with fragile X have at least a basic knowledge of numbers to support, for instance, dealing with the demands of three-operand arithmetic problems? Their intact performance on two-operand problems in the Rivera et al. study suggests so. But is this evidence sufficient? Participants in that study were 10- to 22-year-olds (mean age 16 years), and had a mean full-scale IQ score of 84 points. Single-digit two-operand addition problems are fairly overlearned by 10 years of age (about Grade 5), and success on these problems at ages 10-22 years may simply reflect sound memory rather than arithmetic or numerical understanding.
Indeed, strong verbal memory is a phenotypic characteristic of fragile X syndrome, and good rote numerical skills have been reported in girls with fragile X up to Grade 7 (Murphy & Mazzocco, 2008b). For instance, first- and second-grade girls with fragile X syndrome are far more accurate than their same-age MLD peers at oral number tasks such as reading numbers, counting aloud from 1, counting backwards, or skip counting (e.g., counting by 10s; Murphy et al., 2006). In fact, girls with fragile X perform nearly as well if not better than their peers without MLD on all of these tasks. Furthermore, they seem skilled at memorizing arithmetic facts, particularly at grades when such facts are over-rehearsed. However, they are as impaired as their MLD peers on more conceptual numerical tasks such as verbal magnitude comparison (reporting which of two numbers is larger, identifying a specific ordinal position (e.g., identifying the 4th person in line), and at using one-to-one correspondence when counting (despite facility at counting aloud forward or backward and skip counting; Murphy et al., 2006). Even kindergarten-age girls with fragile X have lower scores than same-age peers on test items that measure counting principles, despite good rote counting (Mazzocco, 2001). A similar pattern emerges at Grades 6 and 7 (Murphy & Mazzocco, 2008a), when girls with fragile X are indistinguishable from their non-MLD peers at reading names of decimals (0.20, 0.05) outperform their MLD peers on this task, but fail the conceptually based task of rank-ordering a combination of fractions and decimals (such as 1/2, 1/4, 0.20, and 0.40). In fact, in this particular study, all girls with fragile X failed this latter task despite stronger than average performance naming decimal values.
These findings suggest three points about inferring causes of mathematics difficulties. First, accuracy on basic numerical tasks, such as counting (or, in the Rivera et al. study, two-operand math problems) does not necessarily determine mastery of number (or arithmetic) knowledge. Second, we cannot assume that the working memory demands of a mathematics task are responsible for mathematics difficulties simply because a less taxing version of the task poses no evident challenge. Third, working memory (or other skills) on which typically developing children can rely to solve taxing mathematics tasks may not be sufficient for children who have weak numerical knowledge despite strong rote number skills. In this latter case, if the rote skill is not accompanied by knowledge, it may not serve a child well on problem solving.
To what can we attribute the weak numerical principles seen in girls with fragile X? Early studies reported significant correlations between counting principles and other select skills in girls with fragile X but not in girls from the general population (or even girls with Turner syndrome) at kindergarten through later school-age years (Mazzocco, 1998). For example, among girls with fragile X, the ability to distinguish individual shapes within a design (figure-ground discrimination), and the ability to recall the correct location of items within an array (local vs. global visual short-term memory), were both positively correlated with evaluating correct versus incorrect counting procedures (Mazzocco, Bhatia, & Lesniak-Karpiak, 2006). These visual perception and discrimination task scores were also positively correlated with paper-and-pencil math calculation skills. IQ scores did not account for these correlations, and the correlations failed to emerge from either a same-age peer group matched on IQ or from girls with Turner syndrome also matched to the participants with fragile X on age and IQ. These findings do not indicate that a relation between math and spatial skills is unique to fragile X, because other researchers have shown that spatial and mathematics skills are related in children from the general population, albeit using different measures of spatial ability than those we describe above, including standardized IQ subtests (e.g., Geary & Burlingham-Dubree, 1989) or number line tasks (e.g., Gunderson, Ramirez, Beilock, & Levine, 2012). However, our findings suggest that girls with fragile X may be processing numbers differently from their peers, without explaining how or why this is so.
Considered together, the research summarized to this point shows that girls with fragile X have math difficulties that differ from girls with MLD in the general population and from typically developing children; that those difficulties occur despite (and may be masked by) strong rote skills or knowledge; and that both executive function and spatial skills may account for some of these difficulties. Rivera et al. (2002) that girls with fragile X fail to engage more prefrontal and parietal brain activation during three- versus two-operand arithmetic, coupled with decreased accuracy on three- versus two-operand problems, may signal disengaging from a task that is too difficult rather than attempting but failing a task due to limited cognitive resources. If their threshold for engaging working memory resources in effortful contexts is below average (Murphy & Mazzocco, 2009), girls with fragile X may rely on strong verbal memory skills that are nevertheless insufficient to support more complex (or more abstract) mathematics, including three-operand arithmetic. This reliance on verbal memory may promote rote skills that may (incorrectly) implicate stronger number knowledge than exists. Correlational analyses cannot confirm these proposed pathways, but do implicate multiple associations that may interact in ways that differ across syndromes.
Read full chapter
URL:
https://www.sciencedirect.com/science/article/pii/B9780128018712000125
Neurocognitive Architectures and the Nonsymbolic Foundations of Fractions Understanding
Mark Rose Lewis, … Edward M. Hubbard, in Development of Mathematical Cognition, 2016
Leveraging the RPS to Support Fraction Learning
There is good reason to believe that conventional fraction instruction fails to effectively leverage the brain’s ability to represent nonsymbolic fractional magnitudes. The first stages of conventional fraction instruction usually rely on partitioning or equal-sharing (Ni & Zhou, 2005; Pitkethly & Hunting, 1996; Siegler et al., 2010). Such approaches involve dividing a figure into equal parts or partitioning a set of items (e.g., partitioning 12 candies into four equally numerous groups) and often fundamentally rely on counting. To identify the fraction illustrated by a partially shaded figure, a child counts the number of shaded parts, assigns this to the numerator and counts the total number of parts and assigns this to the denominator (Davydov & Tsvetkovich, 1991). As a result of this reliance on counting, the early stages of conventional fraction training may encourage the reappropriation of count-based, whole-number schemas rather than harnessing the capabilities of the RPS. This reappropriation can have serious consequences (Mack, 1990; Ni & Zhou, 2005; Siegler et al., 2013). Indeed, Mack (1995) found that partitioning approaches often led 3rd- and 4th-grade students to overgeneralize their whole-number knowledge to fractions. This overgeneralization prevents children from grasping fraction concepts and can lead to common procedural errors such as saying that 12/13 + 7/8 is closer to 19 and 21 than to 2 (Carpenter et al., 1981).
We propose that fraction education may be improved by designing instruction that more directly leverages the RPS while reducing the misapplication of whole-number schemas. Following Feigenson et al. (2004), we argue that acquiring number concepts is easy when they are supported by core systems of representation and hard when this acquisition goes beyond the limits of a core system. However, we disagree with their conclusion that core number systems are incompatible with rational number concepts. Instead, we argue that ratio brain architectures might naturally support fraction concepts that the ANS cannot. Explicitly leveraging the RPS may help discourage the misapplication of whole-number concepts and build a more generative foundation for future learning than for conventional instruction.
We are not necessarily proposing a complete reformulation of fraction instruction, but rather offering a new theoretical basis for (1) imagining how fraction education can be better grounded in children’s preexisting abilities, and (2) systematically developing and testing modifications to conventional fractions instruction. Educators have long used nonsymbolic referents to teach fractions, justifying their use as attempts to ground understanding in children’s informal knowledge (e.g., their knowledge of sharing) (Mack, 1990; Siegler et al., 2010) or to better illustrate the formal logic of rational number mathematics (Davydov & Tsvetkovich, 1991; Moss & Case, 1999; Wu, 2008). Here, we argue that an alternative way of conceptualizing early fraction education is as a process of building upon children’s preexisting abilities to perceive and represent magnitudes corresponding to nonsymbolic ratios. From this perspective, fraction learning does not need to start from scratch or require onerous abstraction; instead, fraction learning can build upon the solid foundation provided by nonsymbolic RPS architectures.
In practice, changes emerging from this perspective may appear small, but their impact may be profound. For example, this perspective suggests that it may be fruitful to replace or supplement conventional nonsymbolic referents composed of discrete, countable elements (e.g., pies and wedges or small sets) with uncountable nonsymbolic ratios such as pairs of lines or uncountable sets of dots. Because these types of ratios are inherently uncountable, their use should help prevent the inappropriate application of whole-number knowledge (see also Boyer et al., 2008; Jeong et al., 2007). Other changes might include the adoption of targeted interventions such as the training paradigm we are employing in Experiment 2. The take-home message is clear: if the brain of the elementary school child—like that of the human adult or the nonhuman primate—is able to represent the holistic magnitudes of these nonsymbolic ratios, pedagogies based on this capacity may also help children build an intuitive understanding of fraction magnitude that serves as a generative foundation for future learning.
We refer to a “generative foundation” because the conceptual foundation built by leveraging the RPS may have effects far beyond cultivating an intuitive understanding of fraction magnitude. Building a stronger, more grounded understanding of fractions in the early stages of learning can support future learning of fractions and related concepts (e.g., decimals, percent, and measure) throughout elementary and middle school and can help prepare students for algebra (Booth & Newton, 2012; Siegler et al., 2012). Building a stronger foundation can also facilitate the profound reorganization of numerical reasoning that Siegler et al. (2011, 2013) have attributed to the acquisition of fraction concepts. In comparison to count-based methods, which may bind thought in terms of whole numbers, proper engagement of the RPS can potentially help students develop a clearer understanding of the relational properties of numbers, enabling them to better grasp key mathematical and scientific concepts such as ratio, rate, and probability. Of course, at this early point, these intriguing possibilities remain speculative and stand in need of experimental verification before they can guide classroom practices. It is our hope that the current chapter will spur such experimental work.
Read full chapter
URL:
https://www.sciencedirect.com/science/article/pii/B978012801871200006X
Evidence-Based Application of Staff and Caregiver Training Procedures
Dorothea C. Lerman, … Amber L. Valentino, in Clinical and Organizational Applications of Applied Behavior Analysis, 2015
Components of Behavioral Skills Training
BST is an active-response training procedure that has proven effective for teaching individuals a variety of new skills (e.g., Fleming, Oliver, & Bolton, 1996). BST has been effectively used to train parents to implement various procedures such as incidental teaching (Hsieh, Wilder, & Abellon, 2011), guided compliance (Miles & Wilder, 2009), feeding protocols (Pangborn et al., 2013), and correct implementation of functional assessment and treatment protocols (Shayne & Miltenberger, 2013). BST is also effective in teaching staff skills such as how to conduct specific behavioral assessments (Barnes, Mellor, & Rehfeldt, 2014), and how to teach peer-to-peer manding (Madzharova, Sturmey, & Jones, 2012) among many others (e.g., Love, Carr, LeBlanc, & Kisamore, 2013).
BST involves four critical components: instruction, modeling, rehearsal, and feedback (Miltenberger, 2003). These components are typically implemented until a pre-set performance criterion is met (e.g., 80% accurate for multiple sessions; 100% accurate on a critical component; see section on How to Evaluate and Monitor Progress). Parsons et al. (2012) described a six-step BST protocol for conducting training with a group of staff members with precise details for each phase of BST. Instructions can be oral or written, but should be clear, brief, and limited in number (e.g., include no more than five specific items or steps per instructional bout). Written reminders or “aids” should be used to supplement the oral instructional portion. Instructions often include what to do, when to do it, and things to avoid doing. Instructions should include visuals to support text and response opportunities about the information (e.g., answering questions, restating, performing part of the task) to check for understanding of the material. The next step of BST, modeling, can be implemented live or via video and should include multiple, clear demonstrations of the target in different settings, with different performers, and with different materials and responses as appropriate. The model can include nonexemplars and the consequences associated with the procedural error, explicitly described as such. Modeling can include active participation such as having individuals describe what is occurring (i.e., the steps of the procedure, errors that occur). Finally, during the rehearsal and feedback phase, the easiest component might be trained to mastery first with prompts and praise as needed. The instructor can then slowly increase the level of difficulty while continuing to praise and prompt accurate performance and then fading prompts and making the schedule of praise intermittent. It is important for individuals to continue practicing the skill at increasingly difficult levels until no prompts are needed and accuracy scores are high (e.g., 80% or higher of steps completed correctly on multiple consecutive attempts).
The following clinical case example illustrates the effective use of BST to teach the mother and 11-year-old sister of an 8-year-old female with developmental delay to implement an effective intervention to cross driveways safely (Veazey, Valentino, & LeBlanc, 2014). A behavior analyst met directly with the family in their home approximately three times per week for 2-h sessions to develop the intervention and provide training. The behavioral intervention for the child consisted of a rule plus differential reinforcement of alternative behavior (DRA) with response blocking. Specifically, the therapist stated the rule “When you get to a driveway, look to see if a car is moving, and then let me know if it is safe to cross.” A preferred tangible item was provided for looking both ways before crossing and for correctly labeling whether it was “safe” or “not safe” to cross. Attempts to cross the driveway without looking were blocked. An ABAB reversal design was utilized to assess the effectiveness of the intervention (see Figure 1, left panel). During the initial baseline phase, she did not cross any driveways safely. During treatment, the percentage of driveways crossed safely quickly increased, reaching a final percentage of 100. A brief reversal indicated she crossed only 50% and 30% of driveways safely. When treatment was reinstated, safe driveway crossing increased to 100% and the results maintained at a 4-month maintenance probe. The schedule of reinforcement for safe driveway crossing was successfully faded from an edible or sticker provided on a fixed-ratio (FR 1) schedule during the first phase of treatment, to tokens (conditioned after the reversal phase) on an FR-1 schedule, to social praise only on an FR-1 schedule.
Figure 1. Percentage of driveways crossed (left panel) and percentage of intervention steps completed correctly by the mother (top panel) and sister (bottom panel).
When the intervention was demonstrated effective, BST was implemented at session 19 to teach the mother and sister to implement the effective intervention. Training consisted of describing the intervention, modeling the intervention with the child while the mother and sister observed, and providing multiple opportunities for the mother and sister to practice implementing the intervention with immediate feedback on performance. Procedural integrity data were collected on the percentage of all steps of the procedure implemented correctly for each training session and subsequent implementation session. See Figure 2 for the procedural integrity data sheet and steps of the protocol. During the baseline phase, the mother and sister did not implement any steps of the intervention correctly. Once BST was conducted, correct implementation increased immediately with the mother to 100% and remained perfect for six consecutive sessions. Correct responding for the sister was more variable, but with continued training she too implemented the intervention with 100% integrity across three consecutive sessions (see Figure 1, right panel).
Figure 2. Procedural integrity data sheet used to assess the mother and sister’s implementation of the driveway crossing protocol.
Read full chapter
URL:
https://www.sciencedirect.com/science/article/pii/B9780124202498000149
Cockpit Automation
Thomas Ferris, … Christopher D. Wickens, in Human Factors in Aviation (Second Edition), 2010
Unintended Performance Consequences of Cockpit Automation
Designers of automated systems strive to achieve a number of goals, including a reduction in pilot workload, relief from having to perform mundane tasks on a regular basis, and an extremely high level of system reliability. While these are well-intentioned driving forces behind the introduction of automation, they have resulted in some unexpected difficulties (e.g., Bainbridge, 1983) that will be discussed in the following sections.
Workload Imbalance
One of the primary goals of automating tasks in the cockpit was, and continues to be, a reduction of physical and cognitive workload. Early on, it appeared that this goal had been achieved to some extent (Wiener, 1988). However, as more experience with cockpit automation accumulated, it became clear that the overall amount of workload was not affected as much as it was re-distributed over crewmembers and over time. “Clumsy” automation, as Wiener (1989) called it, led to a further reduction in workload when it was already low (e.g., the cruise phase of flight), while during periods of high tempo and workload (e.g., the approach and departure phases), the need for instructing and monitoring the automation actually increased workload in some cases (Billings, 1997; Parasuraman & Riley, 1997; Wiener, 1989). Clumsy automation can therefore increase the risk of pilot error in two ways: through vigilance decrements during long periods of inactivity, and through inadequate monitoring or procedural errors when numerous tasks compete for attention during high tempo periods.
A tragic example of the consequences of increased workload and attentional demands while interacting with automation during critical phases of flight occurred in a 1989 airplane accident near Kegworth, England (Air Accident Investigation Branch, Department of Transport—England, 1990). While trying to accomplish an emergency landing because of a malfunctioning engine, both the captain and first officer repeatedly tried and failed to program the FMS to display landing patterns for a nearby airport. This activity consumed the first officer’s attention for a full 2 minutes, and may have affected his ability to notice that the captain was about to shut down the wrong, healthy engine, which ultimately resulted in a catastrophic crash.
Deskilling
In addition to monitoring the automation, the other task left for pilots on highly automated flight decks is to take over from the automation in cases of failure or undesired system behavior (Bainbridge, 1983). One problem with this task allocation is that, over time, continued and extensive use of automation can lead to overreliance on technological assistance and the loss of psychomotor and cognitive skills required for manual flight—a phenomenon referred to as deskilling. Thus, in those rare circumstances when pilots need to intervene and manually control the airplane, they may struggle, especially since they are now required to manually control a system that is not functioning properly (Damos et al., 1999; Hutchins et al., 1999; Sarter & Woods, 1997). Deskilling can lead to a “vicious cycle” of performance degradation (Parasuraman & Riley, 1997) when pilots’ realization of their own skill loss leads to even heavier reliance on automation.
Deskilling may have played a role in a controlled-flight-into-terrain accident outside of Cali, Columbia in 1995 (Aeronautica Civil, 1996). In this case, the pilots, who were accustomed to relying heavily on FMS-generated assistance and displays for navigation, exhibited a diminished ability to recognize the proximity of terrain and to quickly determine that a waypoint they were attempting to locate was behind the aircraft—information which would have been more immediately realized with traditional methods of consulting flight charts.
Reliability, Reliance, and Trust Issues
Automated systems on modern aircraft are extremely reliable and will continue to improve as more sophisticated and precise sensor technologies are being developed, and as researchers attempt to more efficiently tune the automation, for example, by determining the most cost-effective signal/noise threshold for notifications/alerts by applying Signal Detection Theory (e.g., Parasuraman & Byrne, 2003). Even with these continuing improvements, however, malfunctions will continue to occur and affect pilots’ trust in, and reliance on, their automated systems. If and when automation failures do occur, it can be especially problematic when the nature and extent of failures are not apparent to the human operator. For example, partial FMS failures can leave pilots unsure of which subsystems are still active and available, and unaware of how the failure may interact with the overall automation configuration (Sarter & Woods, 1992).
Independent of an automated system’s actual reliability, the perceived reliability of a system has a strong influence on the amount of trust operators put in it, and consequently, the likelihood of its use (Lee & Moray, 1992; 1994). If the level of trust is inappropriate relative to the actual reliability of the system—in other words, if trust is “miscalibrated”—automation use may be inefficient and/or the negative effects of malfunctions may be exacerbated (Lee & See, 2004; Parasuraman & Riley, 1997). An excessive amount of trust in a flightdeck automation system may result in misuse of the system, in which crews may continue to rely on the automation after it malfunctions or has otherwise proven itself unreliable (Parasuraman & Riley, 1997). As a consequence, crews may be placed in a position of needing to intervene when they have not carefully monitored the state of the automated process, in a state sometimes referred to as “complacency”. Conversely, an inappropriately low level of trust in a system can lead to disuse of an otherwise beneficial system. Disuse of automation can occur when systems have a high propensity for false alarms, often as a direct consequence of setting the alarm decision criteria fairly low because of the high cost of a missed warning (Parasuraman & Riley, 1997). A high false alarm rate for automated warnings in the cockpit can lead to pilots ignoring or disabling the alarms due to the “crying wolf” effect (Sorkin, 1988).
To help pilots appropriately calibrate trust with automated aircraft systems, researchers have taken a deeper look at the issues that affect trust in automation, and the contexts in which trust levels are most appropriate (e.g., Lee & See, 2004). For example trust degrades less, and “cry wolf” behavior is less, when errors of automation are smaller and more understandable (Lees & Lee, 2007; Wickens, Rice, Keller, Hutchins, Hughes & Clayton, 2009). One method that has been found to support trust calibration and increase the likelihood of correct compliance to automation-generated alerts is to display the underlying logic for the alerts. For example, when pilots are able to view displays depicting how the actions of surrounding aircraft triggered TCAS alerts, they show a higher rate of compliance and faster responses to the alerts (Pritchett & Hansman, 1997). Another promising approach is to move from binary alerts to a more continuous display of the automation’s alerting logic, employing graded notification strategies (e.g., Lee, Hoffman, & Hayes, 2004). This approach is exemplified in so-called likelihood-alarm displays, which can indicate the likelihood, rather than presence or absence, of a dangerous condition, ranked according to the automation’s confidence in its own diagnostic capability (Sorkin et al., 1988). For example, Xu, Wickens, and Rantanen (2007) showed how a CDTI display that employs three levels of alerting for decreasing distance of approaching aircraft not only improved estimation of miss distance with the approaching aircraft, but led to a higher likelihood for pilots to review raw data, so that even when the automation was not completely reliable, task performance improved.
Another form of a likelihood-alarm display was successfully demonstrated by McGuirl and Sarter (2006), who asked pilots to fly a series of approaches in simulated icing conditions. A neural network-based automated decision aid assisted them in noticing the presence and location (wing or tailplane) of icing and, in one condition, recommended required responses to the icing condition. One group of pilots was provided with a continuously updated 5-minute trace of system confidence in its ability to diagnose the current icing condition. When compared to those who were told only the overall system reliability, the pilots who received the continuously-updated confidence information were faster and more accurate at calibrating their level of trust to the actual reliability of the decision aid, and also showed improved performance—experiencing significantly fewer icing-related stalls and showing a higher likelihood to correctly switch to alternative recovery actions when the decision aid’s diagnosis of the location of icing was found to be incorrect.
Read full chapter
URL:
https://www.sciencedirect.com/science/article/pii/B9780123745187000158
12h shifts and rates of error among nurses: A systematic review
Jill Clendon, Veronique Gibbons, in International Journal of Nursing Studies, 2015
4.1 Search strategy
To avoid duplication, an extensive search of the Cochrane library and the Joanna Briggs Institute was undertaken to ensure there was no existing systematic review on this topic nor any under development. The search strategy aimed to find both published and unpublished studies. A three-step search strategy was utilised. An initial limited search of MEDLINE and CINAHL was completed followed by examination of the key words and phrases contained in the title and abstract, and of the index terms used to describe the study. A second search using all identified keywords and index terms was then undertaken across all included databases. Thirdly, the reference lists of all identified reports and articles were searched for additional studies.
The databases searched included:
- –
-
CINAHL
- –
-
MEDLINE
- –
-
Embase
- –
-
Current contents
- –
-
Proquest Nursing and Allied Health Source
The search for unpublished studies included:
- –
-
Proquest Theses and Dissertations
- –
-
Dissertation Abstracts International
Initial search terms for all databases included:
-
12 h shifts OR shift work OR work pattern
-
AND
-
Nurs*
-
AND
-
clinical error OR practice error OR error OR medication error OR needle stick injury OR procedural error OR transcription error OR charting error OR incidents OR incident reporting OR hospital incidents OR safety OR patient safety OR safe practice OR safety events OR administration error OR event reporting OR failure OR safety OR lack of attentiveness OR lack of agency OR inappropriate judgement OR missed orders OR lack of intervention OR documentation error OR lack of prevention OR nursing error OR accident OR patient safety
-
AND
-
hospital OR acute care OR tertiary setting OR secondary setting
Read full article
URL:
https://www.sciencedirect.com/science/article/pii/S0020748915000735
Subitizing or counting as possible screening variables for learning disabilities in mathematics education or learning?
Annemie Desoete, … Anne Huylebroeck, in Educational Research Review, 2009
There are studies on counting skills of subjects with MLD (e.g., Desoete & Grégoire, 2007; Geary, 2004). Dowker (2005) showed that children who had difficulties in any particular aspect of counting had overall below average mathematical performances. In addition, it was shown that toddlers who lacked adequate and flexible counting knowledge went on to develop deficient numeracy skills which resulted in MLD (Aunola et al., 2004; Gersten et al., 2005). Furthermore, Geary, Bow-Thomas, and Yao (1992) found that small children with MLD were more likely to make procedural errors in counting and still had conceptual difficulties at the age of six. Desoete and Grégoire (2007) also showed that children with MLD in grade l already had encountered problems on numeration in nursery school. They also found some evidence of dissociation of numerical abilities in children with MLD in grade 3 (certain skills appeared to be developed whereas others were not, which made it necessary to investigate them separately and independent of one another). About 13% of the MLD-children still had processing deficits in number sequence and cardinality skills in grade 3. About 67% of the MLD-children in grade 3 had a lack of conceptual knowledge. Finally in this field of research Porter (1998) contributed the finding that the acquisition of procedural counting knowledge did not automatically lead to the development of conceptual understanding of counting in children with MLD. Taking into account the complex nature of mathematical problem solving, it may be useful to assess procedural as well as conceptual counting procedures in young children at risk and in children with MLD, in order to focus on these factors and their role in mathematics learning and development.
Read full article
URL:
https://www.sciencedirect.com/science/article/pii/S1747938X08000432
Substance use among current and former foster youth: A systematic review
Jordan M. Braciszewski, Robert L. Stout, in Children and Youth Services Review, 2012
2 Youth currently in foster care
2.1 Alcohol and drug use
We have used Table 1 to summarize the data in this section by study and participant characteristics, outcome, and methodology. The first section of Table 1 summarizes the six studies assessing quantity or frequency of substance use among youth currently receiving foster care services. Kohlenberg, Nordlund, Lowin, and Treichler (2002) compared youth in foster family homes to a matched, random sample of 1259 adolescents living with their biological parents in the same U.S. state (Kohlenberg et al., 2001).2 Survey results indicated that 54% of youth in foster family homes had used alcohol at least once in their life, and nearly half (41%) had used marijuana. Lifetime use of drugs other than marijuana was very high, including hallucinogens (13.5%), stimulants (12.1%), non-street opiates (9.8%), and powder (5.5%) and crack cocaine (5.2%), all of which were higher than the comparison group. Such results could stem from differences in initiation of substance use, as the foster care sample tended to begin using alcohol and marijuana an average of 1.5 years before their peers.
Table 1. Study summaries: sample characteristics and outcomes.
Group | Outcome | Author (year) | Substance | Rate | Participants | N | Age range | Comparisona |
---|---|---|---|---|---|---|---|---|
In care | Alcohol use | Kohlenberg et al. (2002) | Lifetime alcohol use | 54.0% | FC, in foster families | 231 | 12–17 | Yes |
Past year alcohol use | 34.0% | |||||||
30-day alcohol use | 13.0% | |||||||
30-day “heavy” alcohol use | 2.1% | |||||||
Shin (2004) | Past year, monthly alcohol use | 34.0% | FC, various living sites | 67 | 16.5–17.5 | No | ||
Pilowsky and Wu (2006) | Past year alcohol use | 40.0% | Former FC placement | 464 | 12–17 | Yes | ||
Thompson and Auslander (2007) | 6-month alcohol use | 39.0% | FC, various living sites | 320 | 15–18 | No | ||
Vaughn et al. (2007) | 6-month alcohol use | 37.0% | FC, various living sites | 406 | 17 | No | ||
Drug use | Kohlenberg et al. (2002) | Lifetime marijuana use | 41.0% | FC, in foster families | 231 | 12–17 | Yes | |
Past year marijuana use | 23.0% | |||||||
30-day marijuana use | 10.0% | |||||||
30-day “heavy” marijuana use | 3.4% | |||||||
Shin (2004) | Past year drug use | 22.0% | FC, various living sites | 67 | 16.5–17.5 | No | ||
Pilowsky and Wu (2006) | Past year drug use | 34.0% | Former FC placement | 464 | 12–17 | Yes | ||
Thompson and Auslander (2007) | 6-month marijuana use | 36.0% | FC, various living sites | 320 | 15–18 | No | ||
Vaughn et al. (2007) | Lifetime drug use | 49.0% | FC, various living sites | 406 | 17 | No | ||
Lifetime marijuana use | 46.0% | |||||||
6-month drug use | 28.0% | |||||||
Smith et al. (2010) | 6-month alcohol use | 72.0% | FC in juvenile justice | 79 | 12–17 | No | ||
6-month marijuana use | 68.0% | |||||||
Diagnosis | Kohlenberg et al. (2002) | Any 6-month diagnosis | 9.6% | FC, in foster families | 231 | 12–17 | Yes | |
Pilowsky and Wu (2006) | Past year alcohol abuse | 5.9% | Former FC placement | 464 | 12–17 | Yes | ||
Past year alcohol dependence | 6.5% | |||||||
Past year substance abuse | 7.1% | |||||||
Past year substance dependence | 9.8% | |||||||
Vaughn et al. (2007) | Any lifetime diagnosis | 35.0% | FC, various living sites | 406 | 17 | No | ||
Keller, Salazar, and Courtney (2010) | Lifetime alcohol abuse | 9.8% | FC, various living sites | 732 | 17–18 | No | ||
Lifetime alcohol dependence | 4.2% | |||||||
Lifetime substance abuse | 1.5% | |||||||
Lifetime substance dependence | 4.8% | |||||||
White et al. (2007) | Lifetime alcohol abuse | 7.7% | FC, various living sites | 188 | 14–17 | Yes | ||
Lifetime alcohol dependence | 3.6% | |||||||
Lifetime substance abuse | 14.1% | |||||||
Lifetime substance dependence | 4.2% | |||||||
Past year alcohol abuse | 3.6% | |||||||
Past year alcohol dependence | 2.0% | |||||||
Past year substance abuse | 2.1% | |||||||
Past year substance dependence | 1.5% | |||||||
Exited care | Alcohol use | Jones and Moses (1984) | Current alcohol problems | 20.0% | History of FC | 328 | 19–28 | No |
Cook et al. (1991) | 30-day alcohol use | 42.0% | Follow up | 810 | 18–24 | No | ||
Benedict et al. (1996) | Past year alcohol use | 38.8% | FC alumni | 214 | 19–31 | No | ||
Merdinger et al. (2005) | Current alcohol problems | 7.1% | FC alumni in college | 216 | 18–58 | No | ||
Drug use | Barth (1990) | Current alcohol/drug problems | 33.0% | History of FC | 55 | M = 21 | No | |
30-day drug use | 20.0% | |||||||
Cook et al. (1991) | Drug use problem | 17.0% | Recent FC exit | 1644 | 16 + | No | ||
30-day marijuana use | 13.0% | Follow up | 810 | 18–24 | ||||
Lifetime drug use | 50.0% | |||||||
McMillen and Tucker (1999) | Substance abuse problems | 13.0% | Recent FC exit | 252 | M = 18.42 | No | ||
Benedict et al. (1996) | Lifetime drug use | 54.0% | FC alumni | 214 | 19–31 | No | ||
Merdinger et al. (2005) | Current drug problem | 7.1% | FC alumni in college | 216 | 18–58 | No | ||
Diagnosis | Pecora et al. (2003/2009) | Past year alcohol dependence | 3.7% | FC alumni | 1087 | 20–51 | Yes | |
Past year substance dependence | 3.6% | |||||||
White et al. (2008) | Lifetime alcohol dependence | 11.3% | FC alumni | 479 | 20–33 | Yes | ||
Lifetime substance dependence | 21.0% | |||||||
Past year alcohol dependence | 3.6% | |||||||
Past year substance dependence | 8.0% | |||||||
Courtney et al. (2005) | Lifetime alcohol abuse | 14.3% | FC alumni | 321 | 19 | No | ||
Lifetime alcohol dependence | 6.2% | |||||||
Lifetime substance abuse | 15.0% | |||||||
Lifetime substance dependence | 5.3% |
- a
- Denotes if a study used a comparison group for the outcome measure.
When examining past year, rather than lifetime alcohol and drug use, similar rates are seen for foster youth versus adolescents living with their parents. In fact, adolescents in the family home reported more alcohol, powder cocaine, and other opiate use; however, alcohol (34%) and marijuana (23%) use rates among foster youth were still high. The two groups continued to look similar for use in the past 30 days, as well as heavy use in the past 30 days (i.e., using a substance six or more times).
Among a sample of older adolescents residing in various foster care placements (e.g., foster families, group homes, kinship care), 34% reported drinking alcohol at least once per month in the past year (Shin, 2004). In addition, more than one in five acknowledged tolerance for alcohol, while about the same number (22%) reported drug use in the past year.
Using the National Household Survey on Drug Abuse, Pilowsky and Wu (2006) examined past year substance use among youth with a history of foster care placement. Within the nationally-representative sample of over 19,000 adolescents, just over 2% acknowledged having been in foster care at some point in their lives. Results indicated that adolescents with such a history were significantly more likely to use alcohol (40% vs. 33%) and twice as likely to use drugs in the past year (34% vs. 18%).
Thompson and Auslander (2007) examined recent alcohol and marijuana use and were among the first authors to recruit a large sample of youth who were also residing in representative foster placement types (i.e., foster families and congregate care). Furthermore, the authors used a standardized measure of alcohol and substance use, the Diagnostic Interview Schedule for Children—Revised Version (Costello, Edelbrock, Dulcan, Kalas, & Klaric, 1984). Selecting specific questions rather than diagnoses, the authors reported that almost 40% of the youth had engaged in alcohol use in the past 6 months, while a similar number (36%) indicated using marijuana in the same time frame.
Vaughn, Ollie, McMillen, Scott, and Munson (2007) also recruited foster youth from various placement sites and assessed alcohol and drug use via modified versions of the Diagnostic Interview Schedule for Children and Adolescents (Reich, Welner, & Herjanic, 2002) and Diagnostic Interview Schedule for the DSM-IV (Robins, Cottler, Bucholz, & Compton, 1995). Among this sample, 49% reported lifetime drug use, with marijuana being the most frequent drug of choice (46%). More than one-third of participants (37%) indicated alcohol use in the past 6 months, while 28% endorsed using drugs in the same time period. Although past 1- and 6-month rates of drugs other than marijuana were low, lifetime prevalence again was quite high. For example, many youth endorsed having used amphetamines (16%), hallucinogens (12%), cocaine/crack (7%), and opiates (6%) at some time in their lives.
Finally, Smith, Chamberlain, and Eddy (2010) reported that among adolescents referred to out-of-home placement by the juvenile justice system, 90% had used at least one substance in the past six months. More specifically, 72% had used alcohol, 68% marijuana, and 51% at least one additional substance. Almost half (41%) and more than one-third of marijuana and alcohol users, respectively, reported daily or weekly use.
Taken together, most estimates of alcohol and marijuana use among current foster youth are roughly equal to or greater than that of normative populations or comparison groups within the reported studies. Examination of the most recent normative prevalence data for this age group (Monitoring the Future; Johnston, O’Malley, Bachman, & Schulenberg, 2012) suggests that while past year rates are often similar between the two groups, lifetime rates—particularly for drugs other than marijuana—are much higher among youth in foster care. However, these comparisons, even among the foster youth samples, should be made with caution. The six studies collectively used four different measurement time frames and half included both younger and older adolescents who would, by the nature of their age, have varying levels of experimentation or opportunity to develop substance use problems. Furthermore, substance use measurement has generally been limited to dichotomous outcomes. Given substantially different substance use rates across this developmental period (Substance Abuse and Mental Health Services Administration [SAMHSA], 2011), both aggregation of results across age and the limited binary measures raise almost as many questions as they answer.
2.2 Alcohol and drug diagnoses
As seen in the second part of Table 1, fewer studies have examined the prevalence rates for alcohol and substance use disorders among youth currently in care. Kohlenberg et al. (2002) reported that 9.6% of their foster adolescent sample met criteria for at least one DSM-III-R substance use disorder in the past 6 months, inclusive of alcohol diagnoses, via the Diagnostic Interview Schedule for Children (Fisher, Wicks, Shaffer, Piacentini, & Lapkin, 1992). Although not compared statistically, their normative group rate was 6.2%. Direct comparisons of youth with and without a history of foster placement on DSM-IV criteria suggested that foster youth were almost five times more likely than those without such a history to meet criteria for Substance Dependence in the past year (9.8% vs. 2.2%), and 2–4 times more likely to have any other past year substance use disorder (Pilowsky & Wu, 2006). Vaughn et al. (2007), using items from the Comprehensive Addiction and Severity Index for Adolescents (Myers, 1994), reported a lifetime substance use disorder rate of 35%.
In the largest longitudinal study on foster youth (the Midwest Study), baseline rates of substance use disorders, as measured by the Composite International Diagnostic Interview (CIDI; Kessler & Ustun, 2004), were slightly higher than other normative groups. More specifically, 9.8% of youth preparing to exit the foster care system met lifetime criteria for Alcohol Abuse, over 4% for Alcohol Dependence, and 4.8% for Substance Dependence (Keller et al., 2010). Due to procedural errors an exact prevalence of Substance Abuse could not be estimated, but the rate was conservatively estimated at 1.5% minimum.
The Casey Field Office Mental Health Study included a broader age range of current foster youth, assessing for both lifetime and past year alcohol and substance use disorders using the CIDI (White, Havalchak, Jackson, O’Brien, & Pecora, 2007). Lifetime rates for this group started at 3.6% (Alcohol Dependence) and were as high as 14.1% (Substance Abuse). Past year prevalence for these disorders ranged from 1.5% (Substance Dependence) to 3.6% (Alcohol Abuse). The authors also provided a weighted comparison of these rates with the National Comorbidity Survey—Adolescent (NCS-A) survey, a nationally representative sample of 10,148 youth age 13 to 17. Participants from the Casey Study had significantly higher rates of lifetime Alcohol Dependence (3.6% vs. 1.1%), Substance Abuse (14.1% vs. 8.8%), and Substance Dependence (4.2% vs. 1.8%). Oddly, foster youth evidenced significantly lower rates of past year Substance Abuse (2.1% vs. 5.7%).
Overall, the five studies reported here tend to indicate more problems among foster youth than normative groups. This is especially the case when the measurement time frame is longer (≥ past six months) or when considering substances other than alcohol. Combined with findings on alcohol and substance use, it appears that foster youth may engage earlier than their peers, which could lead to a greater propensity for both “hard” drug use and a higher level of substance use problems (i.e., diagnoses). Given much lower rates of current (versus lifetime) diagnoses, however, foster youth may “age out” of substance use problems in a fashion similar to normative populations. Taken together, a process equivalent to normative groups may exist, while the overall scale of problems remains higher for foster youth at all time periods.
2.3 Predictors of substance use/diagnosis
In a study on various risk behavior outcomes, Taussig and Talmi (2001) examined ethnic/racial differences in self-reported past year substance use among 149 adolescents (age range = 13–17, M = 15.1, SD = 1.4) receiving foster care services. No differences were found between Caucasian, African American, and Hispanic/Latino foster youth. Subsequent regression analyses indicated that older age, history of neglect (but not abuse), and total behavior problems were associated with increased substance use (Taussig, 2002). Poor self-perception of behavior conduct and greater social acceptance were positively related to substance use, above and beyond the aforementioned predictors.
Another study suggested that, among several risk factors for past month alcohol and marijuana use, transitions/mobility, availability of substances, poor family management, low academic performance, lack of commitment to school, antisocial behavior, and peer substance use were significant predictors (Kohlenberg et al., 2002). Poor family attachment was an additional risk factor for marijuana use.
Peer drug use and a history of skipping school were the only predictors of recent alcohol and/or marijuana use among older adolescents in out-of-home care (Thompson & Auslander, 2007). Notable variables that were not significant included age, sex, race/ethnicity, various types of abuse/neglect, and peer alcohol use.
With regard to lifetime substance use, Vaughn et al. (2007) reported that a diagnosis of Conduct Disorder (CD) was associated with use in general, using more than one substance, and lifetime history of an alcohol or substance use disorder. Independent living was also predictive of lifetime substance use and any diagnosis. While a diagnosis of Post Traumatic Stress Disorder (PTSD) predicted polysubstance use, ethnic minority youth and those with a history of physical neglect were less likely to use more than one substance. Participants meeting criteria for PTSD and youth living in congregate care were more likely to have a lifetime alcohol or substance use disorder. Similar results were found for current substance use, as individuals with CD, youth living independently, and family history of substance use or treatment were more likely to be currently using any substance.
Using baseline data from the Midwest Study, Keller et al. (2010) examined differences in lifetime diagnoses across several demographic characteristics. Results suggested that Caucasian youth were more at risk for both alcohol and substance use disorders compared to African Americans, though much of this was accounted for by differences in pre-foster care entry onset. Youth in kinship care were least likely to meet criteria for any disorder, while individuals living independently were more likely to have a lifetime alcohol use disorder. The authors note that the youth who resided in independent living at the time of the study did not have different rates of alcohol use prior to entering foster care. Gender was not a significant predictor of substance use.
Using the same data, Keller, Blakeslee, Lemon, and Courtney (2010) used classification and regression tree analysis to examine different probabilities of receiving a diagnosis of lifetime Alcohol Abuse or Alcohol Dependence. Results indicated that, when including both behavioral indicators (e.g., delinquency, school problems) and environmental circumstances (e.g., placement history, support from caregivers), several profiles of youth existed. These profiles included late adolescents who may benefit from treatment pre-exit from care. More specifically, factors that were related to an alcohol use disorder were recent delinquent behavior, particularly when combined with a history of being the victim of a violent crime, and living independently. When only environmental characteristics were used, profiles suggested patterns that might improve identification of risk and protective factors to be used in preventive intervention efforts. As in their other report (Keller et al., 2010), Caucasians and other non-African Americans were more likely to meet criteria for an alcohol use disorder. Among this group, however, those who were not close with their caregivers were at increased risk for disorder. In addition, youth who reported being “somewhat or very” close to their caregivers, but experienced more than one type of psychological abuse, were classified as more likely to meet diagnostic criteria.
In sum, no clear pattern of useful predictors seems to emerge from the reported studies. Although the same measures were not given in each study, over 15 different variables accounted for foster youth substance use, with little continuity in either variables considered or those found to be significant. In addition, several predictors produced mixed results, including age, race/ethnicity, and neglect. Although defined differently across four studies, aspects of behavioral problems were consistent predictors of substance use or disorders. However, this is not altogether surprising, given the overlap between criteria.
Read full article
URL:
https://www.sciencedirect.com/science/article/pii/S0190740912003350
How Many Ways Can Mouse Behavioral Experiments Go Wrong? Confounding Variables in Mouse Models of Neurodegenerative Diseases and How to Control Them
Heather M. Schellinck, … Richard E. Brown, in Advances in the Study of Behavior, 2010
B Procedural Errors
Procedural errors occur when the experimenter does not follow the methodological protocol. Often these errors are detected on videos and may be corrected by rescoring the data, but there are cases when the data must be discarded. For example, when the apparatus is not set up correctly, equipment is not turned on or data is “lost” on a computer because two files were given the same name. One glaring example of a procedural error occurred in our olfactory digging test when one experimenter put the sugar reward under a plastic lid instead of above the lid. When the mice dug in the odorized bedding, they could not obtain the sugar reward and thus did not learn the odor–sugar association, and during the choice test showed no preference for the S+ over the S− odor. There was no solution but to delete the data set and repeat the study.
Read full chapter
URL:
https://www.sciencedirect.com/science/article/pii/S0065345410410074
Maintenance Human Factors
Barbara G. Kanki, in Human Factors in Aviation (Second Edition), 2010
A Focus on Procedural Error
One area that seemed to defy solution, was procedural error as evidenced in the Air Midwest Flight 5481 accident that occurred on January 8, 2003. The Beechcraft 1900D with 19 passengers and 2 crew, lost pitch control during takeoff and crashed killing all on board. Probable cause was determined to be the incorrect rigging of the elevator control system compounded by the airplane’s center of gravity, which was substantially aft of the certified aft limit.
Contributing to the cause of the accident were (1) Air Midwest’s lack of oversight of the work being performed at the … maintenance station; (2) Air Midwest’s maintenance procedures and documentation; (3) Air Midwest’s weight and balance program at the time of the accident; (4) the Raytheon Aerospace’s quality assurance inspector’s failure to detect the incorrect rigging of the elevator control system; (5) the Federal Aviation Administration’s (FAA) average weight assumptions in its weight and balance program guidance at the time of the accident; and (6) the FAA’s lack of oversight of Air Midwest’s maintenance program and its weight and balance program. (NTSB, 2004, Executive Summary)
While probable cause was traced to individual actions, the contributing factors assigned responsibility to numerous organizations: the operator, maintenance contractors, manufacturer and regulator. Specific procedure-related recommendations were based on an examination of current task documents. In Figure 21.4, the document on the left is from the operator’s detailed inspection work card; the document on the right is from the manufacturer’s Aircraft Maintenance Manual. In each case, it was felt that document inadequacies contributed to the failure of the mechanic, quality assurance inspector, and foreman on site, to detect the maintenance errors (i.e., incorrect rigging of the elevator control system).
Figure 21-4. Deficient documents that contributed to the Air Midwest Flight 5481 accident.
The deficiencies led to the following requirements for manufacturers and operators of Part 121 aircraft:
- •
-
Manufacturers required to identify appropriate procedures for a complete functional check of each critical flight system; determine which maintenance procedures should be followed by such functional checks; and modify their existing maintenance manuals, so that they contain procedures at the end of maintenance for a complete functional check of each critical flight system.
- •
-
Part 121 air carriers also required to modify their existing maintenance manuals, so that they contain procedures at the end of maintenance for a complete functional check of each critical flight system.
- •
-
Part 121 air carriers required to implement a program in which air carriers and aircraft manufacturers review all work card and maintenance manual instructions for critical flight systems and ensure the accuracy and usability of these instructions so that they are appropriate to the level of training of the mechanics performing the work.
In addition to these requirements, the NTSB report noted that many of the air carrier deficiencies should have been identified through their Continuing Analysis and Surveillance System (CASS) program. This was also the case in the Alaska Airlines Flight 261 accident earlier, and the FAA was working on a revision of the original CASS Advisory Circular to include human factors. In April, 2003, the enhanced Advisory Circular, AC 120–79: Developing and Implementing Continuing Analysis Surveillance System (Federal Aviation Administration, 2003) was published.
Maintenance Error Revisited
As accidents and incidents continued to point to maintenance errors that jeopardized safety, Phase 1 research in the NASA MHF task tried to establish error descriptions based on incident data, asking for instance, what are the error types, the contributing factors, the contexts in which they occur, and their consequences? Systematic studies took advantage of recently developed error analysis tools, such as MEDA and HFACS-ME as well as the ASRS maintenance database that had been steadily growing.
FAA research had already shown that some procedural errors were due to poorly written procedures and the Document Decision Aid was developed to help document writers follow human factors guidance (Drury, Sarac, & Driscoll, 1997). Analyses of manufacturer documents provided another angle on procedural error. Hall reported that outdated information, as well as access, readability, portability and training issues contributed to procedural errors (Hall, 2002). Others found through field interviews and surveys, that manufacturer procedures were usually seen as accurate, but sadly lacking in usability (Chapparo & Groff, 2002). Surveys of maintenance personnel on their use of procedures established that procedural errors were often cases of procedural non-compliance. Hobbs and Williamson (2000) reported that 80% of the maintainers surveyed, reported that they had deviated from procedures at least once in the past year and nearly 10% reported doing so often or very often. McDonald, Corrigan, Daly, and Cromie (2000) reported that 34% of routine maintenance tasks were performed contrary to procedures.
The yet untapped NASA ASRS maintenance database quickly became a valuable source of additional insights on procedural error. In addition to being a testbed for developing error analysis tools (Hobbs & Kanki, 2003), substantive studies were also conducted. In the area of procedural error, studies confirmed that the causes of procedural error came from a variety sources; sometimes the procedure content (correctness, completeness, ambiguity, or conflicting information), and sometimes due to the usability or the norms and safety culture governing its use (Patankar, Lattanzio, Munro & Kanki, 2003; Kanki, 2005). Other problem areas were researched in the ASRS database such as the use of the Minimum Equipment List (Munro & Kanki, 2003), and the performance of shift turnovers (Parke, Patankar & Kanki, 2003).
Read full chapter
URL:
https://www.sciencedirect.com/science/article/pii/B9780123745187000213
Improving Outcomes for Adolescents with Learning Disabilities
Patricia Sampson Graner, Donald D. Deshler, in Learning About Learning Disabilities (Fourth Edition), 2012
Mathematics
Some research has suggested that as many as 5–8% of school-aged students experience some sort of mathematics LD (Geary, 2004). Students with LD tend to commit procedural errors, have difficulty organizing information, and evidence working and long-term memory deficits when performing mathematical tasks. Additionally, they frequently have difficulty with basic computation and problem-solving curricular demands (Geary, 2004; Miller & Mercer, 1997). A study by Montague and Applegate (2000) found that students with LD perceived math problems to be more difficult. They also found that these students required more time to complete problems and evidenced fewer strategies than their peers without disabilities.
Maccini and her colleagues (Maccini, Mulcahy, & Wilson, 2007; Maccini, Strickland, Gagnon, & Malmirgren, 2008) have conducted literature reviews to determine the nature and focus of math interventions that are effective for assisting adolescents with LD. Their reviews of the empirical literature found that the practices resulting in the largest effect sizes included: (1) mnemonic strategy instruction (i.e., use of mnemonics to help students remember each step in a problem-solving strategy); (2) graduated instructional approach (i.e., employing a three-phase instructional process involving concrete instruction to introduce students to concepts via manipulatives, semi-concrete or representational instruction using pictures to represent objects, and abstract instruction using numbers and symbols); (3) cognitive strategy instruction involving planning (i.e., using self-monitoring while solving the math problem, focusing while solving the problem, addressing and using various data to solve problems, and solving the math problem in a specific order); and (4) schema-based instruction (i.e., explicit instruction that focuses on helping learners understand the structure of math word problems such as proportion or comparison). Across these various approaches they found a common thread of effective instruction (Rosenshine & Stevens, 1986) including components of direct and explicit instruction such as: modeling, guided practice, independent practice, monitoring student performance, and corrective feedback.
In sum, adolescents with LD face substantial academic challenges that can prevent them from being successful in being college or career ready.
Read full chapter
URL:
https://www.sciencedirect.com/science/article/pii/B9780123884091000114
Genetic Syndromes as Model Pathways to Mathematical Learning Difficulties
Michèle M.M. Mazzocco, … Michael McCloskey, in Development of Mathematical Cognition, 2016
Characterizing MLD in Girls with Fragile X Syndrome
Early studies documented the existence of mathematics difficulties in fragile X, and later studies searched for causal pathways or, initially, cognitive correlates. Such attempts by the first author and her colleagues centered on fragile X as a model of a procedural MLD subtype, in view of reports of poor executive function skills in both children (Kirk et al., 2005) and adults (Mazzocco, Hagerman, Cronister-Silverman, & Pennington, 1992) with the syndrome. The study failed to provide support for this hypothesis by not finding higher rates of procedural errors in school-age girls with fragile X relative to age-matched peers or girls with Turner syndrome (Mazzocco, 1998). (In fact, the Turner syndrome group showed more such errors than girls with fragile X, to be discussed subsequently.) Still, although procedural errors are considered a hallmark of the proposed procedural MLD subtype, the retrospective analysis of written calculation problems may have been insufficient to detect them. That is, procedural errors are not limited to overt written calculation errors, and may have been more apparent if strategy use had been evaluated in the original study. Moreover, procedural errors are only one potential indicator of an association between executive functions and mathematics. Finally, procedural errors are often due to developmental delays (Geary, 1993) and thus might only be detectable during the early stages of learning the procedure.
Later studies succeeded in identifying more specific associations between aspects of mathematics and components or indicators of executive function. In a landmark functional imaging study, Rivera, Menon, White, Glaser, and Reiss (2002) presented girls and women with two- and three-operand arithmetic statements, and asked these participants to report if the statements were true or false. Of interest was how the corresponding increases in working memory demands between the two-operand (2 + 3 = 4) and three-operand (2 + 3 + 1 = 5) statements affected brain activation in typically developing individuals (who showed increased activation in the prefrontal and parietal cortices during the three- vs. two-operand problems), but not females with fragile X (who, as a group, showed less activation on both sets of problems compared to the females without fragile X). Notably, the degree to which females with fragile X did show this increase in activation was correlated with FMRP expression, suggesting an important biological pathway to the working memory and mathematics impairment.
Overt behavioral group differences were also observed in Rivera and colleagues’ study. Females with fragile X syndrome were less accurate than their peers at evaluating whether the three-operand problem were correct or incorrect, but were as accurate as their peers when evaluating two-operand problems. In view of these two markers of arithmetic difficulty, Rivera and colleagues concluded that females with fragile X appear to lack the cognitive resources linked to working memory ability that are needed (and typically relied upon) to compensate for an increase in working memory demands. Likewise, in the previously described Kirk et al. (2005) study with younger (8-year-old) participants, girls with fragile X and an IQ-matched comparison group both showed increased difficulty on an executive function task (the Contingency Naming Task, Anderson, Anderson, Northam, & Taylor, 2000) when working memory demands were increased. Still, when working memory demands were only moderate, girls with fragile X made more errors than did girls in the comparison group, despite taking the same amount of time to complete the task (Kirk et al., 2005). These findings suggest that working memory limitations in females with fragile X cannot be attributed solely to low IQ (Kirk et al., 2005), and that lower thresholds for experiencing working memory overload may contribute to the mathematics difficulties in this group (Murphy & Mazzocco, 2009).
When working memory demands interfere with otherwise effortless tasks, it may be necessary to rely on supporting or compensatory mechanisms. But generating a strategy and successfully using it to solve a taxing arithmetic task both require at least a rudimentary understanding of numbers and arithmetic operations involved. Is there evidence that girls with fragile X have at least a basic knowledge of numbers to support, for instance, dealing with the demands of three-operand arithmetic problems? Their intact performance on two-operand problems in the Rivera et al. study suggests so. But is this evidence sufficient? Participants in that study were 10- to 22-year-olds (mean age 16 years), and had a mean full-scale IQ score of 84 points. Single-digit two-operand addition problems are fairly overlearned by 10 years of age (about Grade 5), and success on these problems at ages 10-22 years may simply reflect sound memory rather than arithmetic or numerical understanding.
Indeed, strong verbal memory is a phenotypic characteristic of fragile X syndrome, and good rote numerical skills have been reported in girls with fragile X up to Grade 7 (Murphy & Mazzocco, 2008b). For instance, first- and second-grade girls with fragile X syndrome are far more accurate than their same-age MLD peers at oral number tasks such as reading numbers, counting aloud from 1, counting backwards, or skip counting (e.g., counting by 10s; Murphy et al., 2006). In fact, girls with fragile X perform nearly as well if not better than their peers without MLD on all of these tasks. Furthermore, they seem skilled at memorizing arithmetic facts, particularly at grades when such facts are over-rehearsed. However, they are as impaired as their MLD peers on more conceptual numerical tasks such as verbal magnitude comparison (reporting which of two numbers is larger, identifying a specific ordinal position (e.g., identifying the 4th person in line), and at using one-to-one correspondence when counting (despite facility at counting aloud forward or backward and skip counting; Murphy et al., 2006). Even kindergarten-age girls with fragile X have lower scores than same-age peers on test items that measure counting principles, despite good rote counting (Mazzocco, 2001). A similar pattern emerges at Grades 6 and 7 (Murphy & Mazzocco, 2008a), when girls with fragile X are indistinguishable from their non-MLD peers at reading names of decimals (0.20, 0.05) outperform their MLD peers on this task, but fail the conceptually based task of rank-ordering a combination of fractions and decimals (such as 1/2, 1/4, 0.20, and 0.40). In fact, in this particular study, all girls with fragile X failed this latter task despite stronger than average performance naming decimal values.
These findings suggest three points about inferring causes of mathematics difficulties. First, accuracy on basic numerical tasks, such as counting (or, in the Rivera et al. study, two-operand math problems) does not necessarily determine mastery of number (or arithmetic) knowledge. Second, we cannot assume that the working memory demands of a mathematics task are responsible for mathematics difficulties simply because a less taxing version of the task poses no evident challenge. Third, working memory (or other skills) on which typically developing children can rely to solve taxing mathematics tasks may not be sufficient for children who have weak numerical knowledge despite strong rote number skills. In this latter case, if the rote skill is not accompanied by knowledge, it may not serve a child well on problem solving.
To what can we attribute the weak numerical principles seen in girls with fragile X? Early studies reported significant correlations between counting principles and other select skills in girls with fragile X but not in girls from the general population (or even girls with Turner syndrome) at kindergarten through later school-age years (Mazzocco, 1998). For example, among girls with fragile X, the ability to distinguish individual shapes within a design (figure-ground discrimination), and the ability to recall the correct location of items within an array (local vs. global visual short-term memory), were both positively correlated with evaluating correct versus incorrect counting procedures (Mazzocco, Bhatia, & Lesniak-Karpiak, 2006). These visual perception and discrimination task scores were also positively correlated with paper-and-pencil math calculation skills. IQ scores did not account for these correlations, and the correlations failed to emerge from either a same-age peer group matched on IQ or from girls with Turner syndrome also matched to the participants with fragile X on age and IQ. These findings do not indicate that a relation between math and spatial skills is unique to fragile X, because other researchers have shown that spatial and mathematics skills are related in children from the general population, albeit using different measures of spatial ability than those we describe above, including standardized IQ subtests (e.g., Geary & Burlingham-Dubree, 1989) or number line tasks (e.g., Gunderson, Ramirez, Beilock, & Levine, 2012). However, our findings suggest that girls with fragile X may be processing numbers differently from their peers, without explaining how or why this is so.
Considered together, the research summarized to this point shows that girls with fragile X have math difficulties that differ from girls with MLD in the general population and from typically developing children; that those difficulties occur despite (and may be masked by) strong rote skills or knowledge; and that both executive function and spatial skills may account for some of these difficulties. Rivera et al. (2002) that girls with fragile X fail to engage more prefrontal and parietal brain activation during three- versus two-operand arithmetic, coupled with decreased accuracy on three- versus two-operand problems, may signal disengaging from a task that is too difficult rather than attempting but failing a task due to limited cognitive resources. If their threshold for engaging working memory resources in effortful contexts is below average (Murphy & Mazzocco, 2009), girls with fragile X may rely on strong verbal memory skills that are nevertheless insufficient to support more complex (or more abstract) mathematics, including three-operand arithmetic. This reliance on verbal memory may promote rote skills that may (incorrectly) implicate stronger number knowledge than exists. Correlational analyses cannot confirm these proposed pathways, but do implicate multiple associations that may interact in ways that differ across syndromes.
Read full chapter
URL:
https://www.sciencedirect.com/science/article/pii/B9780128018712000125
Neurocognitive Architectures and the Nonsymbolic Foundations of Fractions Understanding
Mark Rose Lewis, … Edward M. Hubbard, in Development of Mathematical Cognition, 2016
Leveraging the RPS to Support Fraction Learning
There is good reason to believe that conventional fraction instruction fails to effectively leverage the brain’s ability to represent nonsymbolic fractional magnitudes. The first stages of conventional fraction instruction usually rely on partitioning or equal-sharing (Ni & Zhou, 2005; Pitkethly & Hunting, 1996; Siegler et al., 2010). Such approaches involve dividing a figure into equal parts or partitioning a set of items (e.g., partitioning 12 candies into four equally numerous groups) and often fundamentally rely on counting. To identify the fraction illustrated by a partially shaded figure, a child counts the number of shaded parts, assigns this to the numerator and counts the total number of parts and assigns this to the denominator (Davydov & Tsvetkovich, 1991). As a result of this reliance on counting, the early stages of conventional fraction training may encourage the reappropriation of count-based, whole-number schemas rather than harnessing the capabilities of the RPS. This reappropriation can have serious consequences (Mack, 1990; Ni & Zhou, 2005; Siegler et al., 2013). Indeed, Mack (1995) found that partitioning approaches often led 3rd- and 4th-grade students to overgeneralize their whole-number knowledge to fractions. This overgeneralization prevents children from grasping fraction concepts and can lead to common procedural errors such as saying that 12/13 + 7/8 is closer to 19 and 21 than to 2 (Carpenter et al., 1981).
We propose that fraction education may be improved by designing instruction that more directly leverages the RPS while reducing the misapplication of whole-number schemas. Following Feigenson et al. (2004), we argue that acquiring number concepts is easy when they are supported by core systems of representation and hard when this acquisition goes beyond the limits of a core system. However, we disagree with their conclusion that core number systems are incompatible with rational number concepts. Instead, we argue that ratio brain architectures might naturally support fraction concepts that the ANS cannot. Explicitly leveraging the RPS may help discourage the misapplication of whole-number concepts and build a more generative foundation for future learning than for conventional instruction.
We are not necessarily proposing a complete reformulation of fraction instruction, but rather offering a new theoretical basis for (1) imagining how fraction education can be better grounded in children’s preexisting abilities, and (2) systematically developing and testing modifications to conventional fractions instruction. Educators have long used nonsymbolic referents to teach fractions, justifying their use as attempts to ground understanding in children’s informal knowledge (e.g., their knowledge of sharing) (Mack, 1990; Siegler et al., 2010) or to better illustrate the formal logic of rational number mathematics (Davydov & Tsvetkovich, 1991; Moss & Case, 1999; Wu, 2008). Here, we argue that an alternative way of conceptualizing early fraction education is as a process of building upon children’s preexisting abilities to perceive and represent magnitudes corresponding to nonsymbolic ratios. From this perspective, fraction learning does not need to start from scratch or require onerous abstraction; instead, fraction learning can build upon the solid foundation provided by nonsymbolic RPS architectures.
In practice, changes emerging from this perspective may appear small, but their impact may be profound. For example, this perspective suggests that it may be fruitful to replace or supplement conventional nonsymbolic referents composed of discrete, countable elements (e.g., pies and wedges or small sets) with uncountable nonsymbolic ratios such as pairs of lines or uncountable sets of dots. Because these types of ratios are inherently uncountable, their use should help prevent the inappropriate application of whole-number knowledge (see also Boyer et al., 2008; Jeong et al., 2007). Other changes might include the adoption of targeted interventions such as the training paradigm we are employing in Experiment 2. The take-home message is clear: if the brain of the elementary school child—like that of the human adult or the nonhuman primate—is able to represent the holistic magnitudes of these nonsymbolic ratios, pedagogies based on this capacity may also help children build an intuitive understanding of fraction magnitude that serves as a generative foundation for future learning.
We refer to a “generative foundation” because the conceptual foundation built by leveraging the RPS may have effects far beyond cultivating an intuitive understanding of fraction magnitude. Building a stronger, more grounded understanding of fractions in the early stages of learning can support future learning of fractions and related concepts (e.g., decimals, percent, and measure) throughout elementary and middle school and can help prepare students for algebra (Booth & Newton, 2012; Siegler et al., 2012). Building a stronger foundation can also facilitate the profound reorganization of numerical reasoning that Siegler et al. (2011, 2013) have attributed to the acquisition of fraction concepts. In comparison to count-based methods, which may bind thought in terms of whole numbers, proper engagement of the RPS can potentially help students develop a clearer understanding of the relational properties of numbers, enabling them to better grasp key mathematical and scientific concepts such as ratio, rate, and probability. Of course, at this early point, these intriguing possibilities remain speculative and stand in need of experimental verification before they can guide classroom practices. It is our hope that the current chapter will spur such experimental work.
Read full chapter
URL:
https://www.sciencedirect.com/science/article/pii/B978012801871200006X
Evidence-Based Application of Staff and Caregiver Training Procedures
Dorothea C. Lerman, … Amber L. Valentino, in Clinical and Organizational Applications of Applied Behavior Analysis, 2015
Components of Behavioral Skills Training
BST is an active-response training procedure that has proven effective for teaching individuals a variety of new skills (e.g., Fleming, Oliver, & Bolton, 1996). BST has been effectively used to train parents to implement various procedures such as incidental teaching (Hsieh, Wilder, & Abellon, 2011), guided compliance (Miles & Wilder, 2009), feeding protocols (Pangborn et al., 2013), and correct implementation of functional assessment and treatment protocols (Shayne & Miltenberger, 2013). BST is also effective in teaching staff skills such as how to conduct specific behavioral assessments (Barnes, Mellor, & Rehfeldt, 2014), and how to teach peer-to-peer manding (Madzharova, Sturmey, & Jones, 2012) among many others (e.g., Love, Carr, LeBlanc, & Kisamore, 2013).
BST involves four critical components: instruction, modeling, rehearsal, and feedback (Miltenberger, 2003). These components are typically implemented until a pre-set performance criterion is met (e.g., 80% accurate for multiple sessions; 100% accurate on a critical component; see section on How to Evaluate and Monitor Progress). Parsons et al. (2012) described a six-step BST protocol for conducting training with a group of staff members with precise details for each phase of BST. Instructions can be oral or written, but should be clear, brief, and limited in number (e.g., include no more than five specific items or steps per instructional bout). Written reminders or “aids” should be used to supplement the oral instructional portion. Instructions often include what to do, when to do it, and things to avoid doing. Instructions should include visuals to support text and response opportunities about the information (e.g., answering questions, restating, performing part of the task) to check for understanding of the material. The next step of BST, modeling, can be implemented live or via video and should include multiple, clear demonstrations of the target in different settings, with different performers, and with different materials and responses as appropriate. The model can include nonexemplars and the consequences associated with the procedural error, explicitly described as such. Modeling can include active participation such as having individuals describe what is occurring (i.e., the steps of the procedure, errors that occur). Finally, during the rehearsal and feedback phase, the easiest component might be trained to mastery first with prompts and praise as needed. The instructor can then slowly increase the level of difficulty while continuing to praise and prompt accurate performance and then fading prompts and making the schedule of praise intermittent. It is important for individuals to continue practicing the skill at increasingly difficult levels until no prompts are needed and accuracy scores are high (e.g., 80% or higher of steps completed correctly on multiple consecutive attempts).
The following clinical case example illustrates the effective use of BST to teach the mother and 11-year-old sister of an 8-year-old female with developmental delay to implement an effective intervention to cross driveways safely (Veazey, Valentino, & LeBlanc, 2014). A behavior analyst met directly with the family in their home approximately three times per week for 2-h sessions to develop the intervention and provide training. The behavioral intervention for the child consisted of a rule plus differential reinforcement of alternative behavior (DRA) with response blocking. Specifically, the therapist stated the rule “When you get to a driveway, look to see if a car is moving, and then let me know if it is safe to cross.” A preferred tangible item was provided for looking both ways before crossing and for correctly labeling whether it was “safe” or “not safe” to cross. Attempts to cross the driveway without looking were blocked. An ABAB reversal design was utilized to assess the effectiveness of the intervention (see Figure 1, left panel). During the initial baseline phase, she did not cross any driveways safely. During treatment, the percentage of driveways crossed safely quickly increased, reaching a final percentage of 100. A brief reversal indicated she crossed only 50% and 30% of driveways safely. When treatment was reinstated, safe driveway crossing increased to 100% and the results maintained at a 4-month maintenance probe. The schedule of reinforcement for safe driveway crossing was successfully faded from an edible or sticker provided on a fixed-ratio (FR 1) schedule during the first phase of treatment, to tokens (conditioned after the reversal phase) on an FR-1 schedule, to social praise only on an FR-1 schedule.
Figure 1. Percentage of driveways crossed (left panel) and percentage of intervention steps completed correctly by the mother (top panel) and sister (bottom panel).
When the intervention was demonstrated effective, BST was implemented at session 19 to teach the mother and sister to implement the effective intervention. Training consisted of describing the intervention, modeling the intervention with the child while the mother and sister observed, and providing multiple opportunities for the mother and sister to practice implementing the intervention with immediate feedback on performance. Procedural integrity data were collected on the percentage of all steps of the procedure implemented correctly for each training session and subsequent implementation session. See Figure 2 for the procedural integrity data sheet and steps of the protocol. During the baseline phase, the mother and sister did not implement any steps of the intervention correctly. Once BST was conducted, correct implementation increased immediately with the mother to 100% and remained perfect for six consecutive sessions. Correct responding for the sister was more variable, but with continued training she too implemented the intervention with 100% integrity across three consecutive sessions (see Figure 1, right panel).
Figure 2. Procedural integrity data sheet used to assess the mother and sister’s implementation of the driveway crossing protocol.
Read full chapter
URL:
https://www.sciencedirect.com/science/article/pii/B9780124202498000149
Cockpit Automation
Thomas Ferris, … Christopher D. Wickens, in Human Factors in Aviation (Second Edition), 2010
Unintended Performance Consequences of Cockpit Automation
Designers of automated systems strive to achieve a number of goals, including a reduction in pilot workload, relief from having to perform mundane tasks on a regular basis, and an extremely high level of system reliability. While these are well-intentioned driving forces behind the introduction of automation, they have resulted in some unexpected difficulties (e.g., Bainbridge, 1983) that will be discussed in the following sections.
Workload Imbalance
One of the primary goals of automating tasks in the cockpit was, and continues to be, a reduction of physical and cognitive workload. Early on, it appeared that this goal had been achieved to some extent (Wiener, 1988). However, as more experience with cockpit automation accumulated, it became clear that the overall amount of workload was not affected as much as it was re-distributed over crewmembers and over time. “Clumsy” automation, as Wiener (1989) called it, led to a further reduction in workload when it was already low (e.g., the cruise phase of flight), while during periods of high tempo and workload (e.g., the approach and departure phases), the need for instructing and monitoring the automation actually increased workload in some cases (Billings, 1997; Parasuraman & Riley, 1997; Wiener, 1989). Clumsy automation can therefore increase the risk of pilot error in two ways: through vigilance decrements during long periods of inactivity, and through inadequate monitoring or procedural errors when numerous tasks compete for attention during high tempo periods.
A tragic example of the consequences of increased workload and attentional demands while interacting with automation during critical phases of flight occurred in a 1989 airplane accident near Kegworth, England (Air Accident Investigation Branch, Department of Transport—England, 1990). While trying to accomplish an emergency landing because of a malfunctioning engine, both the captain and first officer repeatedly tried and failed to program the FMS to display landing patterns for a nearby airport. This activity consumed the first officer’s attention for a full 2 minutes, and may have affected his ability to notice that the captain was about to shut down the wrong, healthy engine, which ultimately resulted in a catastrophic crash.
Deskilling
In addition to monitoring the automation, the other task left for pilots on highly automated flight decks is to take over from the automation in cases of failure or undesired system behavior (Bainbridge, 1983). One problem with this task allocation is that, over time, continued and extensive use of automation can lead to overreliance on technological assistance and the loss of psychomotor and cognitive skills required for manual flight—a phenomenon referred to as deskilling. Thus, in those rare circumstances when pilots need to intervene and manually control the airplane, they may struggle, especially since they are now required to manually control a system that is not functioning properly (Damos et al., 1999; Hutchins et al., 1999; Sarter & Woods, 1997). Deskilling can lead to a “vicious cycle” of performance degradation (Parasuraman & Riley, 1997) when pilots’ realization of their own skill loss leads to even heavier reliance on automation.
Deskilling may have played a role in a controlled-flight-into-terrain accident outside of Cali, Columbia in 1995 (Aeronautica Civil, 1996). In this case, the pilots, who were accustomed to relying heavily on FMS-generated assistance and displays for navigation, exhibited a diminished ability to recognize the proximity of terrain and to quickly determine that a waypoint they were attempting to locate was behind the aircraft—information which would have been more immediately realized with traditional methods of consulting flight charts.
Reliability, Reliance, and Trust Issues
Automated systems on modern aircraft are extremely reliable and will continue to improve as more sophisticated and precise sensor technologies are being developed, and as researchers attempt to more efficiently tune the automation, for example, by determining the most cost-effective signal/noise threshold for notifications/alerts by applying Signal Detection Theory (e.g., Parasuraman & Byrne, 2003). Even with these continuing improvements, however, malfunctions will continue to occur and affect pilots’ trust in, and reliance on, their automated systems. If and when automation failures do occur, it can be especially problematic when the nature and extent of failures are not apparent to the human operator. For example, partial FMS failures can leave pilots unsure of which subsystems are still active and available, and unaware of how the failure may interact with the overall automation configuration (Sarter & Woods, 1992).
Independent of an automated system’s actual reliability, the perceived reliability of a system has a strong influence on the amount of trust operators put in it, and consequently, the likelihood of its use (Lee & Moray, 1992; 1994). If the level of trust is inappropriate relative to the actual reliability of the system—in other words, if trust is “miscalibrated”—automation use may be inefficient and/or the negative effects of malfunctions may be exacerbated (Lee & See, 2004; Parasuraman & Riley, 1997). An excessive amount of trust in a flightdeck automation system may result in misuse of the system, in which crews may continue to rely on the automation after it malfunctions or has otherwise proven itself unreliable (Parasuraman & Riley, 1997). As a consequence, crews may be placed in a position of needing to intervene when they have not carefully monitored the state of the automated process, in a state sometimes referred to as “complacency”. Conversely, an inappropriately low level of trust in a system can lead to disuse of an otherwise beneficial system. Disuse of automation can occur when systems have a high propensity for false alarms, often as a direct consequence of setting the alarm decision criteria fairly low because of the high cost of a missed warning (Parasuraman & Riley, 1997). A high false alarm rate for automated warnings in the cockpit can lead to pilots ignoring or disabling the alarms due to the “crying wolf” effect (Sorkin, 1988).
To help pilots appropriately calibrate trust with automated aircraft systems, researchers have taken a deeper look at the issues that affect trust in automation, and the contexts in which trust levels are most appropriate (e.g., Lee & See, 2004). For example trust degrades less, and “cry wolf” behavior is less, when errors of automation are smaller and more understandable (Lees & Lee, 2007; Wickens, Rice, Keller, Hutchins, Hughes & Clayton, 2009). One method that has been found to support trust calibration and increase the likelihood of correct compliance to automation-generated alerts is to display the underlying logic for the alerts. For example, when pilots are able to view displays depicting how the actions of surrounding aircraft triggered TCAS alerts, they show a higher rate of compliance and faster responses to the alerts (Pritchett & Hansman, 1997). Another promising approach is to move from binary alerts to a more continuous display of the automation’s alerting logic, employing graded notification strategies (e.g., Lee, Hoffman, & Hayes, 2004). This approach is exemplified in so-called likelihood-alarm displays, which can indicate the likelihood, rather than presence or absence, of a dangerous condition, ranked according to the automation’s confidence in its own diagnostic capability (Sorkin et al., 1988). For example, Xu, Wickens, and Rantanen (2007) showed how a CDTI display that employs three levels of alerting for decreasing distance of approaching aircraft not only improved estimation of miss distance with the approaching aircraft, but led to a higher likelihood for pilots to review raw data, so that even when the automation was not completely reliable, task performance improved.
Another form of a likelihood-alarm display was successfully demonstrated by McGuirl and Sarter (2006), who asked pilots to fly a series of approaches in simulated icing conditions. A neural network-based automated decision aid assisted them in noticing the presence and location (wing or tailplane) of icing and, in one condition, recommended required responses to the icing condition. One group of pilots was provided with a continuously updated 5-minute trace of system confidence in its ability to diagnose the current icing condition. When compared to those who were told only the overall system reliability, the pilots who received the continuously-updated confidence information were faster and more accurate at calibrating their level of trust to the actual reliability of the decision aid, and also showed improved performance—experiencing significantly fewer icing-related stalls and showing a higher likelihood to correctly switch to alternative recovery actions when the decision aid’s diagnosis of the location of icing was found to be incorrect.
Read full chapter
URL:
https://www.sciencedirect.com/science/article/pii/B9780123745187000158
12h shifts and rates of error among nurses: A systematic review
Jill Clendon, Veronique Gibbons, in International Journal of Nursing Studies, 2015
4.1 Search strategy
To avoid duplication, an extensive search of the Cochrane library and the Joanna Briggs Institute was undertaken to ensure there was no existing systematic review on this topic nor any under development. The search strategy aimed to find both published and unpublished studies. A three-step search strategy was utilised. An initial limited search of MEDLINE and CINAHL was completed followed by examination of the key words and phrases contained in the title and abstract, and of the index terms used to describe the study. A second search using all identified keywords and index terms was then undertaken across all included databases. Thirdly, the reference lists of all identified reports and articles were searched for additional studies.
The databases searched included:
- –
-
CINAHL
- –
-
MEDLINE
- –
-
Embase
- –
-
Current contents
- –
-
Proquest Nursing and Allied Health Source
The search for unpublished studies included:
- –
-
Proquest Theses and Dissertations
- –
-
Dissertation Abstracts International
Initial search terms for all databases included:
-
12 h shifts OR shift work OR work pattern
-
AND
-
Nurs*
-
AND
-
clinical error OR practice error OR error OR medication error OR needle stick injury OR procedural error OR transcription error OR charting error OR incidents OR incident reporting OR hospital incidents OR safety OR patient safety OR safe practice OR safety events OR administration error OR event reporting OR failure OR safety OR lack of attentiveness OR lack of agency OR inappropriate judgement OR missed orders OR lack of intervention OR documentation error OR lack of prevention OR nursing error OR accident OR patient safety
-
AND
-
hospital OR acute care OR tertiary setting OR secondary setting
Read full article
URL:
https://www.sciencedirect.com/science/article/pii/S0020748915000735
Subitizing or counting as possible screening variables for learning disabilities in mathematics education or learning?
Annemie Desoete, … Anne Huylebroeck, in Educational Research Review, 2009
There are studies on counting skills of subjects with MLD (e.g., Desoete & Grégoire, 2007; Geary, 2004). Dowker (2005) showed that children who had difficulties in any particular aspect of counting had overall below average mathematical performances. In addition, it was shown that toddlers who lacked adequate and flexible counting knowledge went on to develop deficient numeracy skills which resulted in MLD (Aunola et al., 2004; Gersten et al., 2005). Furthermore, Geary, Bow-Thomas, and Yao (1992) found that small children with MLD were more likely to make procedural errors in counting and still had conceptual difficulties at the age of six. Desoete and Grégoire (2007) also showed that children with MLD in grade l already had encountered problems on numeration in nursery school. They also found some evidence of dissociation of numerical abilities in children with MLD in grade 3 (certain skills appeared to be developed whereas others were not, which made it necessary to investigate them separately and independent of one another). About 13% of the MLD-children still had processing deficits in number sequence and cardinality skills in grade 3. About 67% of the MLD-children in grade 3 had a lack of conceptual knowledge. Finally in this field of research Porter (1998) contributed the finding that the acquisition of procedural counting knowledge did not automatically lead to the development of conceptual understanding of counting in children with MLD. Taking into account the complex nature of mathematical problem solving, it may be useful to assess procedural as well as conceptual counting procedures in young children at risk and in children with MLD, in order to focus on these factors and their role in mathematics learning and development.
Read full article
URL:
https://www.sciencedirect.com/science/article/pii/S1747938X08000432
Substance use among current and former foster youth: A systematic review
Jordan M. Braciszewski, Robert L. Stout, in Children and Youth Services Review, 2012
2 Youth currently in foster care
2.1 Alcohol and drug use
We have used Table 1 to summarize the data in this section by study and participant characteristics, outcome, and methodology. The first section of Table 1 summarizes the six studies assessing quantity or frequency of substance use among youth currently receiving foster care services. Kohlenberg, Nordlund, Lowin, and Treichler (2002) compared youth in foster family homes to a matched, random sample of 1259 adolescents living with their biological parents in the same U.S. state (Kohlenberg et al., 2001).2 Survey results indicated that 54% of youth in foster family homes had used alcohol at least once in their life, and nearly half (41%) had used marijuana. Lifetime use of drugs other than marijuana was very high, including hallucinogens (13.5%), stimulants (12.1%), non-street opiates (9.8%), and powder (5.5%) and crack cocaine (5.2%), all of which were higher than the comparison group. Such results could stem from differences in initiation of substance use, as the foster care sample tended to begin using alcohol and marijuana an average of 1.5 years before their peers.
Table 1. Study summaries: sample characteristics and outcomes.
Group | Outcome | Author (year) | Substance | Rate | Participants | N | Age range | Comparisona |
---|---|---|---|---|---|---|---|---|
In care | Alcohol use | Kohlenberg et al. (2002) | Lifetime alcohol use | 54.0% | FC, in foster families | 231 | 12–17 | Yes |
Past year alcohol use | 34.0% | |||||||
30-day alcohol use | 13.0% | |||||||
30-day “heavy” alcohol use | 2.1% | |||||||
Shin (2004) | Past year, monthly alcohol use | 34.0% | FC, various living sites | 67 | 16.5–17.5 | No | ||
Pilowsky and Wu (2006) | Past year alcohol use | 40.0% | Former FC placement | 464 | 12–17 | Yes | ||
Thompson and Auslander (2007) | 6-month alcohol use | 39.0% | FC, various living sites | 320 | 15–18 | No | ||
Vaughn et al. (2007) | 6-month alcohol use | 37.0% | FC, various living sites | 406 | 17 | No | ||
Drug use | Kohlenberg et al. (2002) | Lifetime marijuana use | 41.0% | FC, in foster families | 231 | 12–17 | Yes | |
Past year marijuana use | 23.0% | |||||||
30-day marijuana use | 10.0% | |||||||
30-day “heavy” marijuana use | 3.4% | |||||||
Shin (2004) | Past year drug use | 22.0% | FC, various living sites | 67 | 16.5–17.5 | No | ||
Pilowsky and Wu (2006) | Past year drug use | 34.0% | Former FC placement | 464 | 12–17 | Yes | ||
Thompson and Auslander (2007) | 6-month marijuana use | 36.0% | FC, various living sites | 320 | 15–18 | No | ||
Vaughn et al. (2007) | Lifetime drug use | 49.0% | FC, various living sites | 406 | 17 | No | ||
Lifetime marijuana use | 46.0% | |||||||
6-month drug use | 28.0% | |||||||
Smith et al. (2010) | 6-month alcohol use | 72.0% | FC in juvenile justice | 79 | 12–17 | No | ||
6-month marijuana use | 68.0% | |||||||
Diagnosis | Kohlenberg et al. (2002) | Any 6-month diagnosis | 9.6% | FC, in foster families | 231 | 12–17 | Yes | |
Pilowsky and Wu (2006) | Past year alcohol abuse | 5.9% | Former FC placement | 464 | 12–17 | Yes | ||
Past year alcohol dependence | 6.5% | |||||||
Past year substance abuse | 7.1% | |||||||
Past year substance dependence | 9.8% | |||||||
Vaughn et al. (2007) | Any lifetime diagnosis | 35.0% | FC, various living sites | 406 | 17 | No | ||
Keller, Salazar, and Courtney (2010) | Lifetime alcohol abuse | 9.8% | FC, various living sites | 732 | 17–18 | No | ||
Lifetime alcohol dependence | 4.2% | |||||||
Lifetime substance abuse | 1.5% | |||||||
Lifetime substance dependence | 4.8% | |||||||
White et al. (2007) | Lifetime alcohol abuse | 7.7% | FC, various living sites | 188 | 14–17 | Yes | ||
Lifetime alcohol dependence | 3.6% | |||||||
Lifetime substance abuse | 14.1% | |||||||
Lifetime substance dependence | 4.2% | |||||||
Past year alcohol abuse | 3.6% | |||||||
Past year alcohol dependence | 2.0% | |||||||
Past year substance abuse | 2.1% | |||||||
Past year substance dependence | 1.5% | |||||||
Exited care | Alcohol use | Jones and Moses (1984) | Current alcohol problems | 20.0% | History of FC | 328 | 19–28 | No |
Cook et al. (1991) | 30-day alcohol use | 42.0% | Follow up | 810 | 18–24 | No | ||
Benedict et al. (1996) | Past year alcohol use | 38.8% | FC alumni | 214 | 19–31 | No | ||
Merdinger et al. (2005) | Current alcohol problems | 7.1% | FC alumni in college | 216 | 18–58 | No | ||
Drug use | Barth (1990) | Current alcohol/drug problems | 33.0% | History of FC | 55 | M = 21 | No | |
30-day drug use | 20.0% | |||||||
Cook et al. (1991) | Drug use problem | 17.0% | Recent FC exit | 1644 | 16 + | No | ||
30-day marijuana use | 13.0% | Follow up | 810 | 18–24 | ||||
Lifetime drug use | 50.0% | |||||||
McMillen and Tucker (1999) | Substance abuse problems | 13.0% | Recent FC exit | 252 | M = 18.42 | No | ||
Benedict et al. (1996) | Lifetime drug use | 54.0% | FC alumni | 214 | 19–31 | No | ||
Merdinger et al. (2005) | Current drug problem | 7.1% | FC alumni in college | 216 | 18–58 | No | ||
Diagnosis | Pecora et al. (2003/2009) | Past year alcohol dependence | 3.7% | FC alumni | 1087 | 20–51 | Yes | |
Past year substance dependence | 3.6% | |||||||
White et al. (2008) | Lifetime alcohol dependence | 11.3% | FC alumni | 479 | 20–33 | Yes | ||
Lifetime substance dependence | 21.0% | |||||||
Past year alcohol dependence | 3.6% | |||||||
Past year substance dependence | 8.0% | |||||||
Courtney et al. (2005) | Lifetime alcohol abuse | 14.3% | FC alumni | 321 | 19 | No | ||
Lifetime alcohol dependence | 6.2% | |||||||
Lifetime substance abuse | 15.0% | |||||||
Lifetime substance dependence | 5.3% |
- a
- Denotes if a study used a comparison group for the outcome measure.
When examining past year, rather than lifetime alcohol and drug use, similar rates are seen for foster youth versus adolescents living with their parents. In fact, adolescents in the family home reported more alcohol, powder cocaine, and other opiate use; however, alcohol (34%) and marijuana (23%) use rates among foster youth were still high. The two groups continued to look similar for use in the past 30 days, as well as heavy use in the past 30 days (i.e., using a substance six or more times).
Among a sample of older adolescents residing in various foster care placements (e.g., foster families, group homes, kinship care), 34% reported drinking alcohol at least once per month in the past year (Shin, 2004). In addition, more than one in five acknowledged tolerance for alcohol, while about the same number (22%) reported drug use in the past year.
Using the National Household Survey on Drug Abuse, Pilowsky and Wu (2006) examined past year substance use among youth with a history of foster care placement. Within the nationally-representative sample of over 19,000 adolescents, just over 2% acknowledged having been in foster care at some point in their lives. Results indicated that adolescents with such a history were significantly more likely to use alcohol (40% vs. 33%) and twice as likely to use drugs in the past year (34% vs. 18%).
Thompson and Auslander (2007) examined recent alcohol and marijuana use and were among the first authors to recruit a large sample of youth who were also residing in representative foster placement types (i.e., foster families and congregate care). Furthermore, the authors used a standardized measure of alcohol and substance use, the Diagnostic Interview Schedule for Children—Revised Version (Costello, Edelbrock, Dulcan, Kalas, & Klaric, 1984). Selecting specific questions rather than diagnoses, the authors reported that almost 40% of the youth had engaged in alcohol use in the past 6 months, while a similar number (36%) indicated using marijuana in the same time frame.
Vaughn, Ollie, McMillen, Scott, and Munson (2007) also recruited foster youth from various placement sites and assessed alcohol and drug use via modified versions of the Diagnostic Interview Schedule for Children and Adolescents (Reich, Welner, & Herjanic, 2002) and Diagnostic Interview Schedule for the DSM-IV (Robins, Cottler, Bucholz, & Compton, 1995). Among this sample, 49% reported lifetime drug use, with marijuana being the most frequent drug of choice (46%). More than one-third of participants (37%) indicated alcohol use in the past 6 months, while 28% endorsed using drugs in the same time period. Although past 1- and 6-month rates of drugs other than marijuana were low, lifetime prevalence again was quite high. For example, many youth endorsed having used amphetamines (16%), hallucinogens (12%), cocaine/crack (7%), and opiates (6%) at some time in their lives.
Finally, Smith, Chamberlain, and Eddy (2010) reported that among adolescents referred to out-of-home placement by the juvenile justice system, 90% had used at least one substance in the past six months. More specifically, 72% had used alcohol, 68% marijuana, and 51% at least one additional substance. Almost half (41%) and more than one-third of marijuana and alcohol users, respectively, reported daily or weekly use.
Taken together, most estimates of alcohol and marijuana use among current foster youth are roughly equal to or greater than that of normative populations or comparison groups within the reported studies. Examination of the most recent normative prevalence data for this age group (Monitoring the Future; Johnston, O’Malley, Bachman, & Schulenberg, 2012) suggests that while past year rates are often similar between the two groups, lifetime rates—particularly for drugs other than marijuana—are much higher among youth in foster care. However, these comparisons, even among the foster youth samples, should be made with caution. The six studies collectively used four different measurement time frames and half included both younger and older adolescents who would, by the nature of their age, have varying levels of experimentation or opportunity to develop substance use problems. Furthermore, substance use measurement has generally been limited to dichotomous outcomes. Given substantially different substance use rates across this developmental period (Substance Abuse and Mental Health Services Administration [SAMHSA], 2011), both aggregation of results across age and the limited binary measures raise almost as many questions as they answer.
2.2 Alcohol and drug diagnoses
As seen in the second part of Table 1, fewer studies have examined the prevalence rates for alcohol and substance use disorders among youth currently in care. Kohlenberg et al. (2002) reported that 9.6% of their foster adolescent sample met criteria for at least one DSM-III-R substance use disorder in the past 6 months, inclusive of alcohol diagnoses, via the Diagnostic Interview Schedule for Children (Fisher, Wicks, Shaffer, Piacentini, & Lapkin, 1992). Although not compared statistically, their normative group rate was 6.2%. Direct comparisons of youth with and without a history of foster placement on DSM-IV criteria suggested that foster youth were almost five times more likely than those without such a history to meet criteria for Substance Dependence in the past year (9.8% vs. 2.2%), and 2–4 times more likely to have any other past year substance use disorder (Pilowsky & Wu, 2006). Vaughn et al. (2007), using items from the Comprehensive Addiction and Severity Index for Adolescents (Myers, 1994), reported a lifetime substance use disorder rate of 35%.
In the largest longitudinal study on foster youth (the Midwest Study), baseline rates of substance use disorders, as measured by the Composite International Diagnostic Interview (CIDI; Kessler & Ustun, 2004), were slightly higher than other normative groups. More specifically, 9.8% of youth preparing to exit the foster care system met lifetime criteria for Alcohol Abuse, over 4% for Alcohol Dependence, and 4.8% for Substance Dependence (Keller et al., 2010). Due to procedural errors an exact prevalence of Substance Abuse could not be estimated, but the rate was conservatively estimated at 1.5% minimum.
The Casey Field Office Mental Health Study included a broader age range of current foster youth, assessing for both lifetime and past year alcohol and substance use disorders using the CIDI (White, Havalchak, Jackson, O’Brien, & Pecora, 2007). Lifetime rates for this group started at 3.6% (Alcohol Dependence) and were as high as 14.1% (Substance Abuse). Past year prevalence for these disorders ranged from 1.5% (Substance Dependence) to 3.6% (Alcohol Abuse). The authors also provided a weighted comparison of these rates with the National Comorbidity Survey—Adolescent (NCS-A) survey, a nationally representative sample of 10,148 youth age 13 to 17. Participants from the Casey Study had significantly higher rates of lifetime Alcohol Dependence (3.6% vs. 1.1%), Substance Abuse (14.1% vs. 8.8%), and Substance Dependence (4.2% vs. 1.8%). Oddly, foster youth evidenced significantly lower rates of past year Substance Abuse (2.1% vs. 5.7%).
Overall, the five studies reported here tend to indicate more problems among foster youth than normative groups. This is especially the case when the measurement time frame is longer (≥ past six months) or when considering substances other than alcohol. Combined with findings on alcohol and substance use, it appears that foster youth may engage earlier than their peers, which could lead to a greater propensity for both “hard” drug use and a higher level of substance use problems (i.e., diagnoses). Given much lower rates of current (versus lifetime) diagnoses, however, foster youth may “age out” of substance use problems in a fashion similar to normative populations. Taken together, a process equivalent to normative groups may exist, while the overall scale of problems remains higher for foster youth at all time periods.
2.3 Predictors of substance use/diagnosis
In a study on various risk behavior outcomes, Taussig and Talmi (2001) examined ethnic/racial differences in self-reported past year substance use among 149 adolescents (age range = 13–17, M = 15.1, SD = 1.4) receiving foster care services. No differences were found between Caucasian, African American, and Hispanic/Latino foster youth. Subsequent regression analyses indicated that older age, history of neglect (but not abuse), and total behavior problems were associated with increased substance use (Taussig, 2002). Poor self-perception of behavior conduct and greater social acceptance were positively related to substance use, above and beyond the aforementioned predictors.
Another study suggested that, among several risk factors for past month alcohol and marijuana use, transitions/mobility, availability of substances, poor family management, low academic performance, lack of commitment to school, antisocial behavior, and peer substance use were significant predictors (Kohlenberg et al., 2002). Poor family attachment was an additional risk factor for marijuana use.
Peer drug use and a history of skipping school were the only predictors of recent alcohol and/or marijuana use among older adolescents in out-of-home care (Thompson & Auslander, 2007). Notable variables that were not significant included age, sex, race/ethnicity, various types of abuse/neglect, and peer alcohol use.
With regard to lifetime substance use, Vaughn et al. (2007) reported that a diagnosis of Conduct Disorder (CD) was associated with use in general, using more than one substance, and lifetime history of an alcohol or substance use disorder. Independent living was also predictive of lifetime substance use and any diagnosis. While a diagnosis of Post Traumatic Stress Disorder (PTSD) predicted polysubstance use, ethnic minority youth and those with a history of physical neglect were less likely to use more than one substance. Participants meeting criteria for PTSD and youth living in congregate care were more likely to have a lifetime alcohol or substance use disorder. Similar results were found for current substance use, as individuals with CD, youth living independently, and family history of substance use or treatment were more likely to be currently using any substance.
Using baseline data from the Midwest Study, Keller et al. (2010) examined differences in lifetime diagnoses across several demographic characteristics. Results suggested that Caucasian youth were more at risk for both alcohol and substance use disorders compared to African Americans, though much of this was accounted for by differences in pre-foster care entry onset. Youth in kinship care were least likely to meet criteria for any disorder, while individuals living independently were more likely to have a lifetime alcohol use disorder. The authors note that the youth who resided in independent living at the time of the study did not have different rates of alcohol use prior to entering foster care. Gender was not a significant predictor of substance use.
Using the same data, Keller, Blakeslee, Lemon, and Courtney (2010) used classification and regression tree analysis to examine different probabilities of receiving a diagnosis of lifetime Alcohol Abuse or Alcohol Dependence. Results indicated that, when including both behavioral indicators (e.g., delinquency, school problems) and environmental circumstances (e.g., placement history, support from caregivers), several profiles of youth existed. These profiles included late adolescents who may benefit from treatment pre-exit from care. More specifically, factors that were related to an alcohol use disorder were recent delinquent behavior, particularly when combined with a history of being the victim of a violent crime, and living independently. When only environmental characteristics were used, profiles suggested patterns that might improve identification of risk and protective factors to be used in preventive intervention efforts. As in their other report (Keller et al., 2010), Caucasians and other non-African Americans were more likely to meet criteria for an alcohol use disorder. Among this group, however, those who were not close with their caregivers were at increased risk for disorder. In addition, youth who reported being “somewhat or very” close to their caregivers, but experienced more than one type of psychological abuse, were classified as more likely to meet diagnostic criteria.
In sum, no clear pattern of useful predictors seems to emerge from the reported studies. Although the same measures were not given in each study, over 15 different variables accounted for foster youth substance use, with little continuity in either variables considered or those found to be significant. In addition, several predictors produced mixed results, including age, race/ethnicity, and neglect. Although defined differently across four studies, aspects of behavioral problems were consistent predictors of substance use or disorders. However, this is not altogether surprising, given the overlap between criteria.
Read full article
URL:
https://www.sciencedirect.com/science/article/pii/S0190740912003350
Статья
посвящена изучению типичных ошибок в бухгалтерском учёте
и методике их исправления. Рассмотрены понятие и виды
ошибок, способы их выявления и исправления.
Ключевые слова:
ошибка в бухгалтерском учёте, технические ошибки, процедурные
ошибки, простая и существенная ошибки.
В
современной России вопрос о точности в бухгалтерском учёте
остаётся нерешённым. Для правильного ведения бухгалтерского учёта
и составления отчётности необходимо не просто ознакомиться, но
и хорошо разобраться с таким понятием как ошибка
в бухгалтерском учёте, рассмотреть их виды, способы выявления,
а также изучить порядок исправления ошибок.
Актуальность данной статьи
обусловлена необходимостью расширения базы знаний о правильном
составлении бухгалтерской отчётности, ведения бухгалтерского учёта,
а также проведения аудита.
В данной статье будут
рассмотрены вышеуказанные понятия. Таким образом, практическая
значимость статьи заключается в том, что её содержание может
послужить справочным материалом для студентов, изучающих дисциплину
бухгалтерского учёта и для бухгалтеров, которым требуется помощь
при составлении отчётности или ведения бухгалтерского учёта
какой-либо организации.
Методы определения ошибки
в бухгалтерском учёте развивались с течением времени, и в
наши дни этот процесс продолжается. Нововведением в нормативном
и правовом регулировании в бухгалтерском учете и отчетности
Минфином России было утверждено Положение по бухгалтерскому учету
«Исправление ошибок в бухгалтерском учете и отчетности»
ПБУ 22/2010 (приказ от 28.06.2010 № 63н, зарегистрирован
в Минюсте России 30.07.2010 № 18008) и формы
бухгалтерской отчетности организаций (приказ от 02.07.2010 № 66н,
зарегистрирован в Минюсте России 02.08.2010 № 18023).
По П. 2 ПБУ 22/2010
«Исправление ошибок в бухгалтерском учете и отчетности»
утв. Приказом Минфина РФ от 28.06.2010 N 63 даётся следующее
определение: «Ошибка
в бухгалтерском учете и отчетности —
это
неправильное отражение или неотражение фактов хозяйственной
деятельности в бухгалтерском учете или бухгалтерской отчетности
организации».
По ПБУ 22/2010 неточность
или пропуск в отражении фактов хозяйственной деятельности
в бухгалтерском учете или бухгалтерской отчетности организации,
выявленная в результате получения новой информации, которая не
была доступна организации на момент отражения или неотражения таких
фактов хозяйственной деятельности не является ошибкой.
Причиной ошибок может
стать неверное применение законодательства РФ о бухгалтерском
учете и нормативных правовых актов по бухгалтерскому учету,
неверное применение учетной политики организации, неточность
в вычислениях, неверная классификация или оценка фактов
хозяйственной деятельности, неправильное пользование информацией,
имеющейся на дату подписания бухгалтерской отчетности,
недобросовестная деятельность должностных лиц организации.
Ошибки, исходя из причин их
появления и последствий, делятся на три группы.
Первая группа ошибок
включает в себя такие ошибки, которые затрагивают только технику
оформления хозяйственных операций, но не изменяют их экономической
сущности. Эти ошибки являются техническими. В качестве примера
технических ошибок можно привести: арифметическую ошибку, описку,
пропуск. Ошибки этой группы создают неравенство конечных показателей
и значений в отчетности, которые не соответствуют реальным.
Ко второй группе относят
ошибки, приводящие к неверному отражению информации
в бухгалтерском учете и отчетности. И эти ошибки
возникли по причине того, что бухгалтер не соблюдал процедуры
бухгалтерского учета. Поэтому эти ошибки имеют название
«процедурные».
Чаще встречающиеся
процедурные ошибки следующие:
-
ошибка при
документировании операций, при отсутствии первичных документов по
различным операциям, при фальсифицировании документов по
неосуществлённым операциям; -
ошибка в периодизации;
-
ошибка в корреспонденции
счетов; -
ошибка в оценке.
-
ошибка в представлении
информации в отчетности.
К третьей
группе относят ошибки, возникшие в результате использования
устаревших или неверно настроенных программ бухгалтерского учёта,
а также из-за сбоев в работе компьютера.
Для того чтобы выявить
ошибку, нужно выполнять два действия. Первое, нужно определить
ошибку, установить время возникновения ошибки и перечень
документов, в которых она возможно будет обнаружена. Второе,
необходимо идентифицировать ошибку, определив точное местонахождение
определённого ошибочного значения показателя.
Алгоритм обнаружения
конкретных ошибок зависит от их типа. Ошибки в документировании
быстрее всего выявить следующими способами:
-
инвентаризация имущества
организации -
взаимная сверка
задолженностей с дебиторами и кредиторами
Ошибки
в корреспонденции счетов могут быть обнаружены с помощью
тестирования бухгалтерских записей.
Ошибки в представленной
информации в отчетности можно обнаружить, когда составляется
оборотная ведомость субсчетов. Данная ведомость поможет выделить
неоправданное «сокращение» развернутого сальдо по
определённым счетам. Для выявления ошибки в оценке
и периодизации, применяется горизонтальный или вертикальный
анализ показателей бухгалтерской отчетности. После того как
замечается ошибка, ее нужно исправлять, при этом порядок необходимых
действий зависит от времени, когда была найдена ошибка.
Если ошибка отчетного года
выявлена до окончания этого года, то исправляется она записями по
соответствующим счетам бухгалтерского учета в том месяце
отчетного года, в котором она была выявлена. Если же после
окончания, но до даты подписания бухгалтерской отчетности за этот
год, то исправляется записями по соответствующим счетам
бухгалтерского учета за декабрь отчетного года (того года, за который
составляется годовая бухгалтерская отчетность).
Ошибки бывают простые, то
есть те, что связаны с неправильным применением законодательства
о бухгалтерском учете и нормативно-правовых актов по
бухгалтерскому учету, неправильным применением учетной политики
организации, неточностью в вычислениях, неправильной
классификацией или оценкой фактов хозяйственной деятельности,
неправильным использованием информации, имеющейся на дату подписания
бухгалтерской отчетности и недобросовестным действием
должностных лиц организации.
Существенной ошибкой же
считается такая ошибка, которая в большей или меньшей мере,
в отдельности или вместе с другими неточностями в один
отчётный период влияет на бухгалтерскую отчётность, формируя
экономическое решение её пользователей.
Простая ошибка или
существенная решает сама организация. Но любая ошибка, выявленная по
завершению отчётного года, независимо от того, считается ли она
существенной организацией, исправляется одинаково.
В том случае, когда
существенная ошибка предшествующего отчетного года выявлена после
даты подписания бухгалтерской отчетности за этот год, но до даты
представления такой отчетности акционерам акционерного общества,
участникам общества с ограниченной ответственностью, органу
государственной власти, органу местного самоуправления или иному
органу, уполномоченному осуществлять права собственника, и т. п.,
исправляется в порядке, рассмотренном выше. Если указанная
бухгалтерская отчетность была представлена каким-либо иным
пользователям, то она подлежит замене на пересмотренную бухгалтерскую
отчетность. В то же время, пересмотренная бухгалтерская
отчетность должна представиться во все адреса, в которые была
представлена первоначальная бухгалтерская отчетность.
Существенная ошибка
предыдущего отчетного года, выявленная после утверждения
бухгалтерской отчетности за этот год, исправляется двумя путями.
Во-первых, делаются записи по соответствующим счетам бухгалтерского
учета в текущем отчетном периоде. Тогда корреспондирующим счетом
в записях является счет учета нераспределенной прибыли или
непокрытого убытка. Второй способ, это пересчет сравнительных
показателей бухгалтерской отчетности за отчетные периоды, которые
отражены в бухгалтерской отчетности данной организации за
текущий отчетный год, кроме случаев, когда считается невозможным
установление связи ошибки с определённым периодом.
Для пересчета сравнительных
показателей бухгалтерской отчетности осуществляется ретроспективный
пересчёт. Он производится для сравнительных показателей, начиная
с предшествующего отчетного периода, представленного
в бухгалтерской отчетности за текущий отчетный год, в котором
допущена определённая ошибка.
Также вправе исправлять
существенные ошибки предшествующего отчётного года, которые были
выявлены после утверждения бухгалтерской отчётности за этот год
субъекты малого предпринимательства, и социально-ориентированные
некоммерческие организации, в порядке, описываемом в пункте
14 настоящего Положения, без ретроспективного пересчёта.
В том случае, когда
существенная ошибка предшествующего года обнаружена после утверждения
бухгалтерской отчётности, данная отчётность не будет пересмотрена,
заменена и повторно представлена пользователям бухгалтерской
отчётности.
Тогда, когда существенная
ошибка допускается до начала самого первого из представленных
в бухгалтерской отчётности за текущий отчётный год
предшествующих отчётных периодов, корректируются сальдо по
соответствующим статьям активов, обязательств и капитала на
начало самого первого из представленных отчётных периодов.
Если определить влияние
ошибки на один или несколько предшествующих отчётных периодов,
представленных в бухгалтерской отчётности считается невозможным,
то организации должна скорректировать вступительное сальдо по
соответствующим статьям активов, обязательств и капитала на
начало самого раннего из периодов, пересчёт за который возможен.
В бухгалтерском учёте часто
совершаются нарушения и ошибки, которые изначально не видны.
Обнаружить ошибку зачастую становится возможным только при проведении
аудита. Наиболее часто встречающимися ошибками считаются, по
мнению В. И. Подольского, следующие:
-
ошибки, которые
встречаются при анализе общих документов организации; -
ошибки, выявленные при
анализе бухгалтерского учёта; -
ошибки, обнаруженные
в отчётных документах организаций.
В
сегодняшнее время бухгалтерский учёт является основой контроля
деятельности любой организации. От правильности его составления
зависит финансовое состояние фирмы. Что бы обеспечить высокую
точность бухгалтерского учёта, бухгалтерам необходимо долго
и кропотливо работать. Но в современном мире прогресс не
стоит на месте, система бухгалтерского учёта совершенствуется для
упрощения его ведения и контроля. Так, для более эффективной
работы бухгалтерии применяют методы автоматизированного
бухгалтерского учёта, который является основой эффективного
управления. Конечно, работа компьютера не заменит деятельности
хорошего бухгалтера, но это значительно упрощает его труд.
Литература:
-
Подольский В. И.,
Савин А. А., Сотникова Л. В. и др.
Аудит. —
ЮНИТИ-ДАНА — 2009. — стр.57. -
Положение «Исправление
ошибок в бухгалтерском учете и отчетности, —
ПБУ 22/2010, (в ред. Приказов Минфина России от 25.10.2010 N 132н,
от 08.11.2010 N 144н, от 27.04.2012 N 55н) — [электронный
ресурс] — Режим доступа. — URL:
http://base.consultant.ru/cons/cgi/online.cgi?req=doc;base=LAW;n=131610
(дата обращения: 04.11.2012) -
Пронин С. Ошибки
в бухучете. // Расчет. — 2011, № 11. —
стр.12. -
Рабинович А. М. Категории
ошибок. //
Налоговый вестник. —
2011. — № 9. — стр.7 -
Семенихин В. В.,
Бухгалтерский учет и отчетность: исправление ошибок,
допускаемых при ведении учета и формировании отчетности,
с учетом ПБУ 22/2010 // Информационный центр искра —
2012 — [электронный ресурс] — Режим доступа. —
URL:
http://www.uckpa.ru/lawnews/lawdai/buh/20022012_6/ (дата обращения:
15.11.2012)
Основные термины (генерируются автоматически): бухгалтерский учет, бухгалтерская отчетность, ошибка, существенная ошибка, хозяйственная деятельность, дата подписания, отчетность, Россия, бухгалтерская отчетность организации, пересмотренная бухгалтерская отчетность.
Понятие об ошибке – одно из фундаментальных
понятий Управления Ресурсами Экипажа
(СRМ).
Полностью исключить ошибки из деятельности
человека невозможно. Ошибки – стиль
жизни. Мы изучаем реальность методом
«проб и ошибок», воспринимаем ее не
объективно, под влиянием чувств,
настроений, состояния. 2 тысячи лет назад
Цицерон сказал: «Человеку свойственно
ошибаться».
Неизбежность ошибок означает, что мало
уметь действовать правильно, необходимо
научиться:
-
предупреждать;
-
обнаруживать;
-
исправлять
ошибки.
Американский ученый Джеймс Ризон считает
ошибками случаи, когда плановая умственная
или физическая деятельность, не достигает
результата. Ошибка– «незапланированное
действие». Мы или делаем то, что не должны
(ошибка исполнения), или не делаем то,
что должны сделать (пропуски). В любом
случае, результат не соответствует
намерениям.
4.8.1 Теория и модель ошибок человека
Исследования показывают, что опытные
экипажи в нормальных условиях допускают
3 — 5 ошибок в час (неправильный прием
информации, выбор кнопок, пропуск
радиовызова или пункта ККП).
Основные
категории ошибок:
-
Латентные
— (скрытые) ошибки (условия или события
в прошлом, например, ошибки в конструкции
ВС). -
Активные
– непосредственные ошибки или
действия, ставшие причиной ошибок
(пусковые события).
Активные ошибки подразделяют на
3 вида – ошибки, связанные:
-
с
навыками; -
правилами;
-
знаниями.
Принципиальная разница между ними
состоит в режиме работы сознания. При
автоматической деятельности участие
сознания минимально, используемый объем
до 10% и возможно одновременное выполнение
других задач (напр., пилотирование и
ведение радиосвязи).
Сознательная деятельность, основанная
на знаниях, связана с работой долговременной
памяти, использует ресурсы внимания
почти полностью, может сочетаться только
с автоматической деятельностью, не
допускает совмещения с даже простыми
логическими или процедурными задачами.
Процедурная (основанная на правилах)
деятельность по расходу ресурсов
внимания и возможности совмещения
занимает промежуточное между автоматической
и сознательной деятельностью место.
Ошибки, связанные с навыками.
Большинство привычных действий, основано
на хорошо освоенных навыках: ходьба и
речь, ручное пилотирование ВС – относятся
к автоматическим действиям. Автоматическое
поведение, почти, не нуждается в контроле
сознания. Сознательный контроль может
затруднять исполнение.
Навык формируется многократным
повторением. Осознанное исполнение
повышает качество обучения.
Ошибки, связанные с навыками, обычно,
— результат или недостаточного или
чрезмерного внимания, уделяемого задаче
(низкой или чрезмерной мотивации),
возвращения старого навыка (первые
навыки прочнее) или замещения, когда
вместо одного действия выполняется
другое (вместо шасси закрылки).
К ошибкам, связанным с навыками, относятся
непроизвольные движения, ошибки,
обусловленные различием в компоновке
кабин ВС, реверсии и другие, ненамеренные
действия.
Ошибки, связанные с правилами.
Сложные действия требуют участия
сознания. При решении стандартных задач
мы пользуемся набором житейских или
профессиональных правил, которые
экономят и силы и время. При решении
однотипных задач формируется (сознательно
или неосознанно) стереотип действий,
который с одной стороны облегчает
выполнение задачи, с другой стороны
снижает уровень осознанности. Происходит
нечто вроде автоматизации процедурной
деятельности.
Возможны ошибки, связанные с неверным
выбором правила или процедуры. Например,
экипаж может неправильно определить
отказ и, соответственно, применить
неверную процедуру, в результате отказ
не будет парирован. Причиной ошибки
может быть недоученность, неспособность
вспомнить процедуру.
Ошибки, обусловленные различием в
компоновкекабин, происходят из-за
переноса навыка выполнения какой-либо
задачи с помощью определенного органа
управления.
Реверсиипроисходят, когда
сложившийся стереотип не нужен, но
используется машинально. Это происходит,
когда пилот не сосредоточен или в
состоянии стресса.
Ошибки, связанные со знаниями
В нестандартных ситуациях, для которых
нет правил, при выработке решения мы
опираемся на знания и опыт. Ошибки,
связанные со знаниями, возникают в
сложных ситуациях. При этом членам
экипажа точно не известна суть проблемы,
и нет уверенности, что решение даст
желаемый результат.
Ошибки, основанные на знаниях, связаны
с неполными или неверными знаниями, или
неверной интерпретацией ситуации.
Примером служит неправильная оценка
ситуации из-за неточного понимания
принципа работы системы ВС. Если член
экипажа уже сталкивался с аналогичной
ситуацией, он может посмотреть
дополнительную информацию, чтобы
убедиться в правильности своего
понимания, а может не посмотреть….
Концепция «цепи ошибок»
Практически никогда инцидент не
происходит из-за одной единственной
ошибки. При расследовании АП и инцидентов,
обычно, выясняется, что в его основе
лежит несколько ошибок, зачастую
допущенных разными людьми.
Когда одна ошибка создает условия для
возникновения другой, усложняет условия
выполнения следующей задачи и провоцирует
новые ошибки, говорят о возникновении
«цепи ошибок». Работа такой «цепи»
разрушает нормальное взаимодействие
в экипаже и может привести к инциденту.
Если «разорвать» любое звено цепи, то
ее развитие прекратится и ситуация
нормализуется. «Разрывают» цепь с
помощью системных инструментов:
-
Стандартных Процедур (СП);
-
Карт Контрольных Проверок (ККП);
-
Правил CRMи т.д.
Ошибки могут бытьследствием
умышленного или неумышленного поведения
и их можно подразделить на промахи,
упущения и заблуждения в зависимости
от преднамеренности их совершения:
-
промахи – неумышленные действия,
вызванные недостатком необходимого
внимания в результате отвлечений,
нарушения порядка или несвоевременных
действий (например, пилоту была известна
нужная частота, но он ошибочно установил
другую); -
упущения– неумышленные действия
по причине провалов памяти, когда
забываются
собственные намерения, возникает
дезориентация или не выполняются
запланированные
действия (например, пилот знал, что ему
необходимо доложить о занятии нужной
высоты, но забыл это сделать);
-
заблуждения– преднамеренные
действия, вызванные плохим планированием,
а не
умышленным решением нарушить
установленные правила или процедуры
(например,
командир воздушного судна решает
следовать на запасной аэродром с
подходящим прогнозом погоды, но не
имеющим адекватного наземного
оборудования для данного типа ВС ).
Заблуждения основываются на применении
«правил», которые мы создаем на
основании нашего личного опыта. Они
могут возникать в результате применения
правила, неподходящего для данной
ситуации, или неправильного применения
нужного правила.
Промахи и упущенияявляются, в
основном, обусловленными или
автоматическими реакциями, имеющими
мало общего с сознательным принятием
решений.
С другой стороны, заблуждениясвязаны с принятием преднамеренного
решения и оцениванием ситуации,
основанных на знаниях, опыте и
умственных моделях, хорошо срабатывавших
в прошлом.
Нарушения связаны с заблуждениями.
Хотя промахи, упущения и заблуждения
могут привести к техническим нарушениям
авиационных правил или эксплуатационных
процедур авиакомпании, они рассматриваются
как ошибки, поскольку не основаны
на преднамеренном решении о нарушении
установленных правил. Однако нарушения
не являются ошибками.
Подобно заблуждениям, нарушения включают
преднамеренные нарушения планов, часто
основанные на знаниях и умственных
моделях, приобретенных на основании
ежедневного опыта, но также включают
преднамеренное решение нарушать
установленные правила или
процедуры (например, пилот решает
снизиться ниже предписанного минимума
захода на посадку или диспетчер
уменьшает безопасное расстояние между
воздушными судами ниже установленных
стандартов).
Ошибки, ориентированные на
эксплуатационные условия:
-
процедурная
ошибка— непреднамеренная ошибка,
которая может проявляться в виде
промахов, упущений и заблуждений при
выполнении авиационных правил и/или
установлен- ных процедур авиакомпании.
Намерения верны, но выполнение
ошибочно. Сюда также входят ошибки,
когда летный экипаж забыл что-либо
сделать. При совершении проце- дурных
ошибок всегда наличествуют и записанные
процедуры и намерения экипажа.
-
ошибка
связи— непреднамеренная ошибка в
результате неправильной передачи
или
неверного понимания информации, или
неудачной попытки сообщить нужную
информа- цию другим членам летного
экипажа или обменяться ею между
летным экипажем и внешним адресатом
(например, УВД или наземными службами).
-
ошибка,
связанная с профессиональным уровнем— непреднамеренная ошибка, вызван- ная
недостатком знаний или физических
навыков; -
ошибка в принятии эксплуатационных
решений— непреднамеренная ошибка
при принятии решений, не связанная
напрямую с выполнением авиационных
правил или эксплуатационных процедур
авиакомпании, то есть ошибка, которая
неоправданно наносит ущерб безопасности
полетов (например, решение экипажа
пройти сквозь известную зону сдвига
ветра во время захода на посадку); -
преднамеренное несоблюдение—
намеренное отклонение от авиационных
правил и/или эксплуатационных процедур
авиакомпании. Если экипаж испытывает
повышен- ную рабочую нагрузку или
совершает ошибку только один раз,
это, скорее всего, будет процедурной
ошибкой. Однако если экипаж совершает
одну и ту же ошибку неоднократно, или,
если ошибка вызвана халатностью, тогда
это преднамеренное несоблю- дение (т.е.
нарушение).
Условия, способствующие совершению
ошибок
В модели SHEL неровности границ между
различными блоками модели показывают
несоответствия между человеком и
другими элементами модели. Таким
образом, в каждой зоне интерфейса
модели SHEL существует потенциал
провоцирования или усугубления ошибок.
Например:
-
В
зоне взаимодействия «субъект
(человек) – объект (машина)»неудачно
расположен- ные или неправильно
маркированные кремальеры и ручки могут
вызывать замешатель- ство, ведущее к
промахам. -
В зоне взаимодействия «субъект
(человек) – процедуры» могут
случаться задержки и ошибки во время
поисков жизненно важной информации
в запутанной, недостоверной или
чрезмерно загруженной документации
или картах, что может приводить к
промахам и заблуждениям. -
В зоне взаимодействия «субъект
(человек) – окружающая среда»
факторы окружаю- щей среды или сбои
в биологических ритмах могут влиять
на способность сосредо- тачиваться,
разумно мыслить и общаться, что
влияет на отношение к другим членам
экипажа или к самому выполнению
полета, а все это может способствовать
промахам, упущениям или заблуждениям. -
Неудовлетворительное взаимодействие
«субъект (человек) – субъект
(человек)» может снижать
эксплуатационную эффективность и
вызывать недопонимания, и, в конечном
счете, приводить к промахам, упущениям
и заблуждениям (например, неадекватная
передача информации часто упоминается
в отчетах об авиационных происшествиях
как один из причинных факторов).
Условия, способствующие совершению
нарушений
Условия, способствующие совершению
нарушений, не так хорошо понятны, как
факторы, способствующие совершению
ошибок. Ниже приведены в произвольной
последовательности примеры условий,
способствующих совершению нарушений:
-
конфликтующие между собой цели
(например, предпочтение отдается
своевремен- ности обслуживания или
экономии топлива, а не обеспечению
безопасности полетов); -
давление со стороны руководства
авиакомпании (например, «Если ты не
можешь делать это, то я найму кого-нибудь,
кто сможет»); -
давление, инициируемое внутри самого
себя и со стороны коллег (например,
«Прежний командир воздушного судна
хорошо справлялся с этим, и я смогу»); -
конфликт между командиром ВС и
руководством авиакомпании; -
ненадлежащие надзор и контроль;
-
не отвечающие требованиям нормы
(например, применение опасной практики
коллегами по работе); -
ошибочное восприятие риска;
-
безразличие, проявляемое руководством
(например, молчаливое согласие с тем,
что
отклонения от правил приемлемы);
-
вера в то, что «авиационное происшествие
не может случиться со мной»; -
нечеткие или бессмысленные правила;
-
культура поведения «все могу»,
требующая отклонений от правил.
4.8.2 Обратимые
и необратимые ошибки
Обратимые ошибки, как правило, могут
быть исправлены, а необратимые нет.
Например, если экипаж ошибся в расчете
количества топлива, он может сесть в
ближайшем аэропорту и дозаправиться.
А если по ошибке слил топливо в полете,
то возможности исправления у него может
не оказаться.
Хорошо сконструированная система или
процедура предполагает возможность
исправления ошибок. Так на случай, если
экипаж неправильно распределит топливо
по бакам, что приведет к нарушению
балансировки ВС, должна быть предусмотрена
предупредительная сигнализация.
Непроизвольные движения, пропущенные
действия, ошибочные намерения
Дж. Ризон классифицирует ошибки по
«намерениям»:
-
Предшествовало ли намерение действию?
-
Выполнялись ли действия по плану?
-
Достигли ли они результата?
Непроизвольные движения–
это действия, которые выполняются не
намеренно и не планируются. Например,
дрожание пальцев при установке частоты
на пульте или словесные оговорки.
Пропуски имеют место при
дефиците ресурсов памяти и/или внимания,
когда пилот забывает что-либо сделать.
Например, выпустить шасси.
Ошибочные намерения–
специфический тип ошибок, когда человек
что-либо делает, полагая, что действия
правильные, а фактически – это не так.
Например, выключает не тот двигатель.
Нарушения.
К 4-му типу можно отнести ошибки,
традиционно, называемые нарушениями.
С точки зрения системы нарушения —
результат ошибок профотбора, обучения,
оценки персонала, качества разработки
и внедрения процедур или других системных
недостатков. Нарушения могут быть
следствием стремления лучше выполнить
работу или некомпетентности и лени.
Различают три типа нарушений:
-
Привычные;
-
Ситуативные;
-
Оптимизирующие.
Привычные нарушения – это
нарушения, ставшие повседневной нормой
(в подразделении или авиакомпании),
например, в силу того, что члены экипажа
считают процедуру слишком сложной, и
нарушают ее, чтобы упростить задачу,
сэкономить время.
Ситуативные нарушения —
следствие дефицита времени, высокой
рабочей нагрузки или плохой эргономики
ВС. Такие нарушения люди совершают ради
выполнения задачи (полета).
Оптимизирующие нарушения —
отказ от правил. Порой, не связаны с
задачей. Человек использует возможность
удовлетворить собственные потребности;
напр., делает круг над домом, нарушая
правила.
Дефицит времени и рабочая нагрузка
повышают вероятность нарушений. Люди
сравнивают риск и выгоду спонтанно.
Реальный риск может быть значительно
выше ожидаемого.
Нарушенияотличаются от ошибок
намеренным характером. Т.е., кто-то что-то
делает, зная, что это не по правилам.
Вопрос: должен ли экипаж слепо следовать
стандартным процедурам или отклонения
иногда допустимы, достаточно неоднозначен.
Управление ошибками – это система
действий, направленных на сохранение
контроля над ситуацией, которая
предусматривает комплекс методов
распознавания ошибок, обеспечения
необходимого уровня бдительности и
применение специальных процедур
исправления ошибок.
Управление ошибками – нечто большее,
чем просто стремление предотвращать,
и даже больше, чем стремление исправлять
все ошибки. Эффективный контроль над
ситуацией означает применение таких
стратегий, которые строятся на
представлении, что:
-
не все ошибки приводят к значимым
последствия; -
ошибки носят ненамеренный характер –
никто не планирует ошибаться.
Ошибки– это предупредительные
сигналы, буферная зона между ситуацией,
когда «все под контролем» и когда она
не управляема. Без этих предупредительных
сигналов грань между контролируемым и
не контролируемым состояниями, стала
бы опасно тонкой. Ошибки помогают
учиться, адаптироваться, «держать руку
на пульсе», то есть сохранять над
ситуацией контроль.
Эксперты сохраняют высокий уровень
контроля над ситуацией за счет умения
отделять существенные ошибки от не
существенных. Это умение приходит с
опытом.
Управление ошибками на уровне
экипажа
Заметить ошибку другого человека проще,
чем свою собственную.
Групповые стратегии управления ошибками
включают:
● Коммуникации,
● Правила радиообмена с диспетчером
ОВД,
● Стандартные команды и доклады,
● Стандартные процедуры,
● Перекрестный контроль,
● Брифинг,
● Применение Карт Контрольных Проверок.
Задача управления
ошибками состоит в том, чтобы свести к
минимуму негативные последствия ошибок
при условии, что человеческая ошибка
может произойти в любое время и на любом
этапе полета.
Прежде всего
необходимо выявить ошибку до того
момента, когда она может негативно
сказаться на выполнении полета. Если
же ошибка своевременно не обнаружена
и не предпринято действие по ее
компенсации, ситуация в полете может
значительно усложниться.
Особую опасность
представляют ошибочные действия экипажа
при компенсировании уже допущенной
ошибки. Это может привести к трагическому
финалу.
Способности
человека ограничены. Ошибки возрастают
при увеличении рабочей нагрузки. Ошибки
также происходят при работе со сложными
системами ВС.
Безопасность
полетов это общая и абсолютная ценность
авиации. Главная обязанность всего
персонала развить и поддерживать на
высоком уровне культуру безопасности
в авиакомпании.
Возможности
управления ошибками
а)
Избегание ошибок.
Ошибок
можно избежать, строго выполняя SOP
и научившись
справляться с нестандартными ситуациями
и скрытыми угрозами.
б)
Защита от
ошибок.
Выполнение
стандартных процедур обеспечивает
своевременное обнаружение и исправление
ошибки, прежде чем она усложнит ситуацию.
в)
Уменьшение
последствий ошибки (компенсация).
После
обнаружения ошибки, необходимо
незамедлительно предпринять корректирующие
действия для уменьшения негативных
последствий ошибки.
Соседние файлы в папке приборы + электрообор
- #
- #
- #
- #
- #
- #
12.01.20186.26 Mб362Силовые установки ВС. Учебное пособие.pdf
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF
Ведение бухгалтерского учета требует большой точности, которую, зачастую, трудно соблюсти. Вследствие чего совершение ошибок не заставляет себя долго ждать.
В современных условиях России может показаться, что подобные упущения совершаются довольно редко, но в действительности данный вопрос так и остается не решенным. Для понимания, как возникают неточности при составлении отчетов необходимо ознакомиться с понятием ошибки, изучить все виды, способы нахождения, а также проанализировать способы и порядок их исправления.
Ошибки – это непреднамеренное изменение экономических данных вследствие вычислительных и логических ошибок в учетных записях, ошибки в полноте учета, либо неверное понимание, представление фактов хозяйственной деятельности, наличия и состояния имущества и расчетов.
Методы обнаружения ошибки в бухгалтерском учете со временем развиваются и совершенствуются на всех уровнях, в том числе на законодательном. Нововведением в нормативном и правовом регулировании в бухгалтерской отчетности было принято Минфином России в Положении по бухгалтерскому учету «Исправление ошибок в бухгалтерском учете и отчетности» ПБУ 22/2010 (приказ от 28.06.2010 № 63н, зарегистрирован в Минюсте России 30.07.2010 № 18008) и формы бухгалтерской отчетности организаций (приказ от 02.07.2010 № 66н, зарегистрирован в Минюсте России 02.08.2010 № 18023).
Согласно п. 2 ПБУ 22/2010 «Исправление ошибок в бухгалтерском учете и отчетности», утвержденном Приказом Минфина России от 28.06.2010 N 63, для бухгалтерской ошибки дается следующее определение: «Ошибка в бухгалтерском учете и отчетности — это неправильное отражение или не отражение фактов хозяйственной жизни в бухгалтерском учете или бухгалтерской отчетности организации».
Самое главное для исправления ошибки – это понять, откуда она взялась. Причиной неточности может быть неправильное использование законодательства РФ и других нормативно-правовых актов по бухгалтерскому учету, ошибочная классификация и оценка фактов производственной деятельности предприятия, неточная передача информация (неправильность самой информации), имеющейся на день подписания бухгалтерского отчета и недобросовестная деятельность должностных лиц компании.
Опираясь на причины и последствия появления ошибок, их можно разделить на три группы.
В первую группу входят ошибки, касающиеся технологии оформления хозяйственных операций, т.е. форма предоставления информации, которая не влияет на экономические показатели. Эти ошибки технические. Например, опись, арифметическая ошибка и пропуск. При пересчете они создают неравенство конечных значений, которые могут запутать проверяющего, но при этом последние цифры, посчитанные бухгалтером, будут экономически верны. Здесь основной причиной является человеческий фактор или неисправное состояние техники.
Ко второй причисляют недочеты, которые приводят к неверному отображению информации в бухгалтерской отчетности. Эти ошибки называют процедурными. Они возникают по причине того, что бухгалтер не соблюдал технологию процедуры проведения бухгалтерского учета. К самым распространенным относятся ошибки в периодизации, в оценке, в корреспонденции счетов, при отсутствии первичных документов по различным операциям, при фальсификации документов по неосуществленным операциям и др.
К третьей группе относятся ошибки, возникающие в последствии ориентирования на неактуальную, или неправильно настроенную программу для бухгалтерского учета, а также вследствие сбоя работы ЭВМ.
Ошибки также можно разделить на простые и существенные. Первые встречаются намного чаще, в отличие от последних. Существенной ошибкой принято считать ту, которая в какой-либо мере, в частном или общем случае (с другими недочетами), в один отсчетный период оказывают влияние на всю отчетность.
Вид ошибки определяет само предприятие (простая, либо существенная). Но в любом исходе, решается и исправляется она одинаково.
Существенная ошибка предыдущего отчетного года, обнаруженная после утверждения отчетности за этот год, исправляется двумя способами. При первом составляются записи по соответствующим счетам отчета в текущем периоде. Корреспондирующим счетом при записи является счет учета нераспределенного дохода или непокрытого расхода. Во втором способе, исключая случаи, когда установление связи ошибки с определенным периодом представляется невозможным, пересчитывают сравнительные показатели бухгалтерского учета за отчетные периоды, которые отображены в отчете определенного предприятия за текущий отчетный год.
Таблица 1 Перечень возможных ошибок
Описание характера ошибок (замечаний) |
Указание нарушенных положений с описанием действующего положения (нормы) |
Последствия допущенного нарушения |
Порядок исправления ошибок |
по счету 01 «Основные средства» |
|||
1.Несвоевременное отражение прихода объекта основных средств в бухгалтерском и налоговом учете |
Допущено нарушение п.5 ст.8 Закона «О бухгалтерском учете № 402-Ф3 от 06.12.2011 г., а именно «Все хозяйственные операции и результаты инвентаризации подлежат своевременной регистрации на счетах бухгалтерского учета без каких-либо пропусков или изъятий |
1)Занижена стоимость остатков налогооблагаемого имущества. 2) Занижена начисленная сумма амортизации. 3) Занижен налог на имущество. 4) Завышен налог на прибыль. 5) Завышена бухгалтерская и налоговая прибыль |
1) Составить дополнительный расчет по налогу на имущество. 2)Бухгалтер должен ужесточить контроль за своевременным представлением ему документов по факту оприходования основ-х средств |
2.Несвоевременное списание с баланса пришедших в негодность основных средств (через несколько месяцев после даты начала оформления Акта) |
Нарушен п. 5 ст. 8 Закона “О бухгалтерском учете”: Все хозяйственные операции и результаты инвентаризации подлежат своевременной регистрации на счетах бухгалтерского учета без каких-либо пропусков и изъятий |
1) Завышен остаток стоимости основных средств по счету 01. 2) Завышен налог на имущество. 3) Завышена сумма начисления амортизации 4) Завышена сумма расходов по обычным видам деятельности. 5) Занижена бухгалтерская и налогооблагаемая прибыль. 6) Завышен налог на имущество 7)Занижен налог на прибыль |
1) Указанные ошибки в бухгалтерском учете исправлению не подлежат, так как они отражены на основании первичного док-та, оформленного в нарушение п.4 ст.9 Закона “О бухгалтерском учете” 2) Впредь необходимо требовать от материально-ответственных лиц своевременного составления и сдачи в бухгалтерию документов. 3) В налоговом учете следует скорректировать расходы по налогу на прибыль на сумму завышения начисленной амортизации |
3. Отсутствие аналитического учета (отсутствие карточек по каждому объекту, отсутствие оборотной ведомости и т.д.) |
Нарушена инструкция по применению плана счетов бухгалтерского учета от 31 октября 2000 г., а именно Аналитический учет по счету 01 “Основные средства” ведется по отдельным инвентарным объектам основных средств”. |
При отсутствии данных аналитического учета не возможно: 1) Обосновано составить ведомость начисления амортизации 2) Определить стоимость объектов, освобождаемых от налога на имущество 3) Осуществить контроль за достоверностью данных аналитического и синтетического учета по суммам оборотов и сальдо. 4) Провести инвентаризацию основных средств. |
Восстановить аналитический учет |
4. Объекты сдаваемые в лизинг ошибочно учитываются на счете 01 “Основные средства”, а не на счете 03 “Доходные вложения в материальные ценности “ |
Нарушен п.5 ПБУ 6/01 от 30.03.2001 г. №26н, а именно: “ Основные средства, предназначенные исключительно для представления организацией за плату во временной владение и пользование или во временное пользование с целью получения дохода, отражаются в бухгалтерском учете и бухгалтерской отчетности в составе доходных вложений в материальные ценности |
1.Искажены остатки имущества в балансе: 1)по статье баланса “Основные средства” завышены 2)по статье баланса “Доходные вложения” – занижены 2.Возникает риск наложения административного штрафа на должностное лицо от 20 до 30 МРОТ (ст.15.2 КоАП РФ) |
Внести изменения в учет основных средств: А)сторно прихода с 01 (Д-т 01 К-т 08) Б) восстановить Д-т 03 К-т 08. |
5. Предметы проката учитываются на счете 41 “Товары” |
Нарушена Инструкция по применению плана счетов бухгалтерского учета от 31 окт. 2000 г. ( в ред. Приказа Минфина РФ от 07.05.03. №38н), а именно: Cчет 41 “Товары” предназначен для обобщения информации о наличии и движении товарно-материальных ценностей, приобретенных в качестве товаров для продажи” |
Искажены показатели баланса, а именно: по статье “Доходные вложения в материальные ценности” Сальдо занижено, а по статье “Готовая продукция, товары для перепродажи”- завышено |
Осуществить перевод предметов проката со счета 41 на счет 03 следующей системой проводок: Сторно Д-т 41 К-т 60 Восстановить Д-т 08 К-т 60 Д-т 03 К-т 08 |
по счету 60 «Расчеты с поставщиками и подрядчиками» |
|||
1.Наличие по субсчету 60 «Авансы выданные» кредитового сальдо, что не допустимо. Сальдо по этому субсчету может быть только дебетовым или нулевым |
Нарушена технология работы с субсчетов «Авансы выданные» по счету 60 |
Искажение данных по счету 60 |
Выявить причину ошибки. Написать бухгалтерскую справку. Отразить в учете неправильные проводки. |
2 В бухгалтерском учете не отражаются поставки (т.е. поступившие на склад материальные ценности , по которым от поставщика не поступили счета и другие документы) |
Нарушена Инструкция по применению плана счетов Бухгалтерского учета в части 60, а именно: “Счет 60” предназначен для обобщения информации о расчетах с поставщиками и подрядчиками за: …товарно-материальные ценности, работы и услуги, на которые расчетные документы от поставщиков или подрядчиков не поступили ( так называемые неотфактурованные поставки) |
Искажение (занижение) остатков материалов и товаров в балансе Занижение остатков кредиторской занижение |
Ужесточить контроль за своевременной сдачей в бухгалтерию приходных документов по фактически поступившим на склады организации ТМЦ. |
3 Наличие по субсчету 60 “Авансы выданные” кредитового сальдо, что не допустимо. Сальдо по этому субсчету может быть только дебетовым или нулевым |
Нарушена технология работы с субсчетом “Авансы выданные” по счету 60 |
Искажение сальдо по счету 60 |
1 Выявить причину ошибки 2Написать бухгалтерскую справку 3Отразить в учете исправительные проводки |
по счету 70 «Расчеты с персоналом по оплате труда» |
|||
1. Отсутствие письменно оформленных и утвержденных положений о премировании работников организации, коллективных договоров |
Нарушено требование ст.135 Кодекса Законов о труде РФ, а именно: “Система заработной платы, размеры тарифных ставок, окладов, различного вида выплат устанавливаются : …работникам других организаций – коллективными договорами, соглашениями, локальными нормативными актами организации, трудовыми договорами” |
Допущение необоснованных расходов на оплату труда Завышение затрат Завышение прибыли |
Срочно оформить положение о премировании (или об оплате труда, включая премирование) |
2. Отсутствие срочных трудовых договоров для оплаты труда временных работников |
Нарушено требование ст.58 и 59 Кодекса Законов о труде РФ: “Срочный трудовой договор заключается в случаях, когда трудовые отношения не могут быть установлены на неопределенный срок с учетом характера предстоящей работы или условий ее выполнения…” ( абз.4ст. 58 ТК РФ) |
Наличие расходов , не подтвержденных необходимыми документами. Завышение суммы расходов как в бухгалтерском , так и в налоговом учете Занижение налога на прибыль |
1. Составить срочные трудовые договора 2.Впредь не начислять заработную плату временным работникам при отсутствии срочного договора. |
3.За время командировки работнику начислена заработная плата из расчета оклада |
Нарушена норма, отраженная в ст.167 ТК РФ: “При направлении работника в командировку ему гарантируется сохранение места работы и среднего заработка, а также возмещение расходов, связанных со служебной командировкой” |
1. Занижена оплата труда 2. Занижена удержанная сумма НДФЛ 3. Занижены расходы по обычным видам деятельности в бухгалтерском учете Занижены расходы, связанные с производством и реализацией в налоговом учете. |
Произвести перерасчет оплаты труда за дни командировки из расчета средней заработной платы. |
В целом можно сделать вывод о том, что ошибки и недочеты не являются редкостью, и уже существуют меры по их исключению, но их не достаточно. Как законодательным органам, так и самим организациям еще предстоит немало работы для борьбы с ошибками при бухгалтерском учете. Но прогресс и экономическое развитие не стоит на месте: будут разрабатываться новые устройства, новые программные обеспечения и новые методы и способы по устранению и недопусканию подобных недочетов.
Список использованной литературы:
1. Положение по бухгалтерскому учету «Исправление ошибок в бухгалтерском учете» (ПБУ 22/2010) [Электронный ресурс]: утверждено приказом Минфина РФ от 25 октября 2010 г. № 132н (в ред. от 06.04.2015 № 57н) // СПС «Консультант Плюс».
2. Бухгалтерский учет (финансовый и управленческий): учебник / Н.П. Кондраков 5-е изд., перераб. и доп. – Москва: НИЦ ИНФРА-М, 2016. – 584 с.
3. Мулюкова, Г.Р. Бухгалтерский учет доходных вложений в материальные ценности [Текст] / Г.Р. Мулюкова, А.Р. Худайбердин, А.Р. Фахретдинов //
4. Фаррахова, Ф.Ф. Актуальные проблемы учета издержек обращения в торговле [Текст] / Ф.Ф. Фаррахова, Д.М. Лукьянова // Новые парадигмы общественного развития: экон., соц., философские, полит., правовые, общенаучные тенденции и закономерности: сб. статей – Новосибирск, 2015. – С. 94-97.
5. Фаррахова, Ф.Ф. Анализ движения и состояния основных средств в ФГУП «Учхоз «Миловское» БГАУ [Текст] / Ф.Ф. Фаррахова, Э.Р. Салахутдинова, Э.Р. Мухаметзянова // Состояние и перспективы увеличения производства высококачественной продукции с/х: сб. статей. – Уфа, 2013. – С. 116-119.
6. Ахмадиева, Э.И. Учет операций по аренде основных средств [Текст] / Э.И. Ахмадиева, Ф.Ф. Фаррахова // Бухгалтерский учет, анализ и аудит: сб. статей. – Уфа, 2015. – С. 13-15.
7. Галеева, А.А. Особенности учета дебиторской задолженности [Текст] / А.А. Галеева, Ф.Ф. Фаррахова // Экономика и управление: теория и практика: сб. статей. – Днепропетровск, 2013. – С. 165-168.
8. Худайбердин, А.Р. Мотивационно-ценностное отношение студентов к занятиям физической культуры в БГАУ [Текст] / А.Р. Худайбердин // В мире науки и инноваций: сб. трудов – Краснодар, 2017. – С. 53-55.
9. Рафикова, А.Р. Особенности учета расчетов поставщиками и подрядчиками в ООО “ФМ Индустрия” [Текст] / А.Р. Рафикова, Ф.Ф. Фаррахова // Студент и аграрная наука: сб. статей. – Уфа, 2014. – С. 194-197.
10. Вахитова, А.И. Учет расчетов с персоналом по оплате труда и налогообложения в ООО Торговый дом “Агрохимцентр” [Текст] / А.И. Вахитова, Ф.Ф. Фаррахова // Бухгалтерский учет, анализ и аудит: сб. статей. – Уфа, 2014. – С. 62-65.
11. Фаррахова, Ф.Ф. Особенности организации учета затрат и выхода продукции молочного скотоводства в МУП ”Бирский плодосовхоз” [Текст] / Ф.Ф. Фаррахова, Р.Р. Баширова // Направления модернизации современного инновационного общества: экономика, социология, философия, политика, право: сб. статей. – Уфа, 2015. – С. 111-113.
Ошибки в бухгалтерской отчетности: способы выявления и исправления
«Бухгалтерский учет», N 22, 2001
Достоверной и полной считается бухгалтерская отчетность, сформированная исходя из правил, установленных нормативными актами по бухгалтерскому учету <*>. Отчетность, подготовленная и представленная с нарушением указанного требования, является искаженной.
<*> См. п.6 ПБУ 4/99 «Бухгалтерская отчетность организации», утвержденного Приказом Минфина России от 06.07.1999 N 43н.
Классификация бухгалтерских ошибок
В зависимости от того, затрагивают ли ошибки только технику оформления хозяйственных операций или заключаются в неправильном отражении экономической информации в учете и отчетности, можно выделить ошибки по форме (технические) и по содержанию (процедурные).
Ошибки по форме (технические)
Арифметические ошибки, описки и пропуски можно объединить в одну группу, потому что их наличие приводит к неравенству итоговых показателей отчетности либо к несоответствию величины ошибочного показателя реально возможному значению. Эти ошибки легко исправить в процессе подготовки отчетов.
Ошибки автоматизированной обработки информации возникают как при вводе информации в компьютерную программу, так и непосредственно при использовании программного обеспечения: при обработке, хранении и передаче данных. Наиболее распространенными из них являются: повторный ввод, «потеря» данных при хранении, неточное округление.
Ошибки по содержанию (процедурные)
Ошибки в документировании хозяйственных операций:
полное или частичное отсутствие регистрации отдельных фактов хозяйственной жизни вследствие небрежности работников бухгалтерской службы или недостатка информации об этих фактах (ошибки по полноте);
отражение в учете операций, не имевших места в действительности, при наличии фальсифицированных первичных документов, подтверждающих совершение этих операций (ошибки по достоверности).
Ошибки в документировании выявляются путем инвентаризации имущества и обязательств организации.
Ошибки в периодизации возникают из-за несвоевременного получения организациями документов от коммерческих партнеров — счетов на оплату услуг связи и коммунальных платежей, транспортных накладных организаций — перевозчиков, счетов — фактур поставщиков и др.
Ошибки в корреспонденции состоят в отражении фактов хозяйственной жизни на счетах бухгалтерского учета, которые не предусмотрены для этого Планом счетов. Их можно обнаружить при помощи тестирования бухгалтерских записей.
Ошибки в оценке связаны как с неверным выбором способа оценки, так и с неправильным определением цен, начислением амортизации, резервов и т.д.
Ошибки в представлении означают неправильное «расположение» информации в бухгалтерской отчетности вследствие нарушения требований нормативных актов. К ошибкам этой группы можно отнести: неправильную группировку балансовых статей (объединение разнородных по экономическому содержанию статей, разбивка балансовой статьи и включение ее частей в другие статьи), погашение активов пассивами и, наоборот, путем неправильного зачета требований и обязательств.
Способы выявления ошибок при подготовке бухгалтерской отчетности
Процедура выявления ошибок подразумевает их локализацию и идентификацию. Локализация заключается в установлении временного интервала возникновения ошибки и перечня ее возможных документальных носителей. Идентификация предполагает определение точного места нахождения и конкретного ошибочного значения показателя.
Основными способами выявления ошибок с помощью системы внутреннего контроля являются:
инвентаризация,
динамический (горизонтальный) и структурный (вертикальный) анализ показателей бухгалтерской отчетности,
тестирование бухгалтерских записей,
самоконтроль при составлении отчетов (арифметико-логический контроль, проверка взаимной увязки показателей).
Рассмотрим методику проведения горизонтального анализа на примерах 1 и 2.
Пример 1. Ревизионной комиссией ООО «Гирвас» (основной вид деятельности — оптовая торговля) в период подготовки годовой бухгалтерской отчетности за 2001 г. (март 2002 г.) составлен аналитический отчет о прибылях и убытках (см. табл. 1), данные которого приведены поквартально, без подсчета нарастающего итога.
Таблица 1
Аналитический отчет о прибылях и убытках ООО «Гирвас» за 2001 г.
Наименование |
Значение показателя за период, руб. |
|||
I квартал |
II квартал |
III квартал |
IV квартал |
|
Выручка - нетто от |
553 856 |
811 622 |
876 304 |
942 765 |
Себестоимость про- |
338 762 |
555 825 |
654 003 |
646 337 |
Валовая прибыль |
215 094 |
255 797 |
222 301 |
296 428 |
Коммерческие расходы |
92 683 |
93 943 |
34 549 |
97 638 |
Прибыль (убыток) от |
122 411 |
161 854 |
187 752 |
198 790 |
Прочие операционные |
56 394 |
63 917 |
65 200 |
59 136 |
Прочие операционные |
23 514 |
20 758 |
22 832 |
24 161 |
Внереализационные |
11 465 |
11 577 |
11 658 |
11 393 |
Внереализационные |
12 436 |
8 279 |
12 368 |
11 864 |
Прибыль (убыток) до |
154 320 |
208 311 |
229 410 |
233 294 |
Налог на прибыль и |
70 000 |
70 000 |
70 000 |
77 350 |
Чистая прибыль (не- |
84 320 |
138 311 |
159 410 |
155 944 |
При анализе данных табл. 1 ревизионная комиссия обратила внимание на:
а) себестоимость проданных товаров и коммерческих расходов за III квартал. По сравнению с данными за II квартал рост себестоимости (17,7%) значительно опередил рост выручки от реализации (8%). При этом несущественно повышающиеся в течение года коммерческие расходы резко снизились в отдельно взятом периоде. Проверка регистров бухгалтерского учета показала, что фактическая величина коммерческих расходов в III квартале составила 94 549 руб. На разность между истинным значением и величиной, отраженной в составе данных по стр. 030 ф. N 2 (60 000 руб.), был увеличен показатель себестоимости проданных товаров. Фактическая себестоимость составила 594 003 руб.;
б) внереализационные расходы за II квартал снизились. Комиссией было установлено, что основную долю этих расходов составляют потери товаров сверх установленных норм естественной убыли. Списание их стоимости на счет прибылей и убытков производилось ежемесячно по актам. В указанном квартале допущена ошибка в документировании — не отражены в учете потери за июнь в сумме 3970 руб., так как экземпляр акта на списание товаров, предназначенный для передачи в бухгалтерию, был утерян. Следовательно, величина внереализационных расходов во II квартале должна была составить 12 249 руб. (8279 руб. + 3970 руб.);
в) сумма начисленного налога на прибыль в I — III кварталах оставалась неизменной несмотря на рост показателя прибыли до налогообложения. Причиной этого стало то, что бухгалтерия ООО «Гирвас» в течение года начисляла налог на прибыль исходя не из ее фактического значения, а из величины уплаченных за квартал авансовых платежей. При этом суммы дополнительных платежей в бюджет (возврата из бюджета), исчисленные исходя из расчетных значений налога на прибыль, в бухгалтерском учете не отражались, а само значение налога на прибыль было приведено в соответствие с налоговыми расчетами за 2001 г. только в IV квартале.
Известно, что аналитические отчеты становятся более понятными, если абсолютные значения показателей дополнить относительными. При проведении горизонтального анализа относительным показателем выступает темп роста (темп прироста) статьи по отношению к базисному (предыдущему) ее значению. Относительные показатели приводятся в процентах (долях), что повышает наглядность отчетов.
Пример 2. ООО «Гирвас» в декабре 2000 г. зарегистрировало право на товарный знак. Получено свидетельство сроком на 3 года стоимостью 87 000 руб.
Инвентаризационной комиссией при проведении инвентаризации имущества организации в декабре 2001 г. выполнен расчет остаточной стоимости нематериальных активов (товарного знака), результаты которого приведены в табл. 2. Учитывая, что ООО «Гирвас» применяет линейный способ начисления амортизации нематериальных активов, следовало ожидать, что на конец отчетного года товарный знак «потеряет» треть своей стоимости, т.е. ее значение составит 66,7% от первоначальной стоимости. Но по данным динамического анализа получено значение остаточной стоимости, превышающее ожидаемое на 4,9%.
Таблица 2
Динамика остаточной стоимости нематериальных активов ООО «Гирвас» в 2001 г.
На |
На |
На |
На |
На |
|||||
в руб. |
в % к |
в руб. |
в % к |
в руб. |
в % к |
в руб. |
в % к |
в руб. |
в % к |
87 000 |
100% |
80 018 |
92,0% |
73 596 |
84,6% |
67 690 |
77,8% |
62 258 |
71,6% |
Ревизорами установлено, что амортизация товарного знака ежемесячно ошибочно начислялась в процентах не от первоначальной, а от остаточной стоимости на начало месяца. Таким образом, амортизация нематериальных активов начислена не полностью. Следует дополнительно начислить 4263 руб. (87 000 х 4,9% : 100%).
Вертикальный анализ — это представление бухгалтерской отчетности в виде относительных величин, характеризующих структуру итоговых показателей. Здесь подлежит расчету удельный вес (доля) каждой статьи в совокупном значении по отчетной форме в целом или по отдельной ее части. Например, для анализа активов и пассивов организации за 100% может приниматься валюта баланса, итог соответствующего раздела или группы статей. При построении аналитического отчета о прибылях и убытках за 100%, как правило, принимают объем выручки — нетто.
С помощью вертикального анализа производится оценка существенности отдельных показателей при формировании общего итога отчета. Также выявляются нетипичные для организации или незапланированные изменения тех или иных статей, что говорит о возможном наличии ошибок.
Пример 3. Ревизионной комиссией по данным бухгалтерских балансов проведен вертикальный анализ внеоборотных активов ООО «Гирвас» за 2001 г., результаты которого представлены в табл. 3.
Таблица 3
Вертикальный анализ внеоборотных активов ООО «Гирвас» за 2001 г.
Показа- |
На |
На |
На |
На |
На |
|||||
в руб. |
в % |
в руб. |
в % |
в руб. |
в % |
в руб. |
в % |
в руб. |
в % |
|
Немате- |
87000 |
4,7 |
87000 |
5,8 |
87000 |
5,4 |
87000 |
5,0 |
87000 |
5,0 |
Основ- |
836754 |
45,3 |
814317 |
54,2 |
799133 |
49,6 |
778986 |
44,9 |
758648 |
43,3 |
Капи- |
921572 |
50,0 |
601572 |
40,0 |
685692 |
42,5 |
829692 |
47,8 |
866280 |
49,4 |
Долго- |
0 |
0 |
0 |
0 |
40000 |
2,5 |
40000 |
2,3 |
40000 |
2,3 |
Итого |
1845326 |
100 |
1502889 |
100 |
1611825 |
100 |
1735678 |
100 |
1751928 |
100 |
<**> По первоначальной стоимости.
Комиссия отметила резкое (на 10%) сокращение стоимости капитальных вложений в I квартале 2001 г. По данным табл. 3 это не связано с принятием к учету каких-либо объектов, относящихся ко внеоборотным активам. Следовательно, имели место бухгалтерские записи, уменьшающие сальдо по счетам учета инвестиций организации во внеоборотные активы, без корреспонденции со счетами учета конкретных видов таких активов. Действительно, значение показателя бухгалтерского баланса на 31.12.2000 (стр. 130, графа «на конец года») было ошибочно увеличено на сумму аванса по текущим операциям в размере 320 000 руб. Этот показатель в бухгалтерских балансах, составляемых в течение 2001 г., отражался, соответственно, в графе «на начало года». В отчете за I квартал 2001 г. указанная ошибка исправлена, но необходимые пояснения отсутствовали.
Тестирование бухгалтерских записей (алгоритмов обработки бухгалтерской информации) базируется на допущении о наличии взаимосвязи между данными бухгалтерского учета и отчетными показателями. Тестирование включает формирование выборки хозяйственных операций, внесение данных в компьютерную систему или ручную их обработку по принятым в организации алгоритмам (циклам обработки) и сравнение полученных итоговых показателей с заранее определенными результатами.
Если в результате сравнения значения итоговых показателей совпадают, то можно сделать вывод об адекватном представлении данных в компьютерной среде и верности информации, используемой для подготовки бухгалтерской отчетности.
Порядок исправления бухгалтерских ошибок
Методика исправления выявленных процедурных ошибок, связанных с неверным отражением хозяйственных операций вследствие нарушения установленных правил ведения бухгалтерского учета, напрямую зависит от периода, к которому относится ошибка. В Методических рекомендациях о порядке формирования показателей бухгалтерской отчетности организации <***> (п.11) приведены три варианта корректировки учетных данных.
Вариант 1. При выявлении неправильного отражения хозяйственных операций текущего периода до окончания отчетного года исправления производятся записями по соответствующим счетам бухгалтерского учета в том месяце отчетного периода, когда эти искажения выявлены.
<***> Утверждены Приказом Минфина России от 28.06.2000 N 60н.
Вариант 2. При выявлении неправильного отражения хозяйственных операций в отчетном году после его завершения, но за который годовая бухгалтерская отчетность не представлена и не утверждена в установленном порядке, исправления производятся записями декабря того года, за который подготавливается бухгалтерская отчетность.
Вариант 3. При выявлении в текущем отчетном периоде неправильного отражения хозяйственных операций на счетах бухгалтерского учета в прошлом году, за который бухгалтерская отчетность утверждена в установленном порядке, исправления в бухгалтерский учет и отчетность за прошлый год не вносятся.
В последнем случае нужно руководствоваться требованиями п.п.39 и 80 Положения о порядке ведения бухгалтерского учета и бухгалтерской отчетности в Российской Федерации, согласно которым изменения, связанные с исправлением данных за прошлый год (или ряд предшествующих лет), отражаются в отчетности того периода, в котором была обнаружена ошибка. При этом производится бухгалтерская запись в корреспонденции со счетами 99 «Прибыли и убытки» и 91 «Прочие доходы и расходы» в зависимости от вида ошибки. Отметим, что организация должна раскрывать значение показателя прибылей или убытков прошлых лет, выявленных в отчетном году, в ф. N 2 (стр. 220, графы 3 — 6).
Исправительные записи в бухгалтерском учете делаются одним из указанных ниже способов.
Способ 1. Неправильно сделанная бухгалтерская запись повторяется в той же корреспонденции, но со знаком «минус», и одновременно производится правильная запись. Такой способ обычно используется, когда нужно исправить ошибку в корреспонденции счетов. Если требуется полностью удалить ошибку, то выполняется только сторнировочная запись.
Способ 2. Производится дополнительная запись на сумму, не отраженную на счетах бухгалтерского учета. Этот способ также используется для исправления ошибок в документировании и оценке.
Способ 3. Выполняется обобщенная бухгалтерская запись, приводящая данные на счетах в отчетном периоде к такому состоянию, какое имело бы место в случае изначально правильного отражения операций в прошлых отчетных периодах (для варианта 3). Это позволяет организации не искажать показатели продаж (выручки, себестоимости и др.) отчетного периода.
Оформляются исправительные записи бухгалтерской справкой — первичным учетным документом, служащим основанием для выполнения записей в регистрах бухгалтерского учета. Бухгалтерская справка составляется в произвольной форме с соблюдением требований п.2 ст.9 Закона «О бухгалтерском учете» к наличию обязательных реквизитов. В качестве образца организация может использовать типовую форму бухгалтерской справки, утвержденную Госкомстатом России для бюджетных учреждений.
Пример 4. По результатам выездной налоговой проверки ООО «Гирвас», состоявшейся в июле 2001 г., установлен факт неверного исчисления НДС по приобретенному в марте отчетного года товару: по накладной и счету — фактуре поставщика цена товара составила 45 980 руб., сумма НДС — 4598 руб. ООО «Гирвас» оприходовало товар по стоимости 50 578 руб. без выделения НДС и отразило эту операцию в бухгалтерском учете:
Д-т сч. 41 «Товары»,
К-т сч. 60 «Расчеты с поставщиками и подрядчиками»
на сумму 50 578 руб.
В данном случае должна быть сделана исправительная запись:
Д-т сч. 41 «Товары»,
К-т сч. 60 «Расчеты с поставщиками и подрядчиками»
на сумму 4598 руб.;
Д-т сч. 19-3 «НДС по приобретенным материально — производственным запасам»,
К-т сч. 60 «Расчеты с поставщиками и подрядчиками»
на сумму 4598 руб.
В.Д.Новодворский
Профессор ВЗФЭИ
Д.В.Назаров
Исполнительный директор
ООО «Москворецкий дом аудита»
Н.Н.Клинов
ВЗФЭИ